[1] M. Lakestani and B. N. Saray, Numerical solution of telegraph equation using interpolating scaling functions, Comput. Math. Appl. 60 (2010) 1964–1972, https://doi.org/10.1016/j.camwa.2010.07.030.
[2] P. M. Jordan and A. Puri, Digital signal propagation in dispersive media, J. Appl. Phys. 85 (1999) 1273–1282.
[3] V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Probl. 9 (1993) p. 789, https://doi.org/10.1088/0266-5611/9/6/013.
[4] Y. H. Youssri and W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys. 63 (2018) 1–16.
[5] O. Tasbozan and A. Esen, Quadratic B-spline Galerkin method for numerical solutions of fractional telegraph equations, Bull. Math. Sci. Appl. 18 (2017) 23–39.
[6] O. Tasbozan and A. Esen, Collocation solutions for the time fractional telegraph equation using cubic B-spline finite elements, An. Univ. Vest Timis. Ser. Mat.-Inform. 57 (2019) 131–144, https://doi.org/10.2478/awutm-2019-0020.
[7] E. Shivanian, S. Abbasbandy and A. Khodayari, Numerical simulation of 1D linear telegraph equation with variable coefficients using meshless local radial point interpolation (MLRPI), Int. J. Ind. Math. 10 (2018) 151–164.
[8] A. H. Bhrawy, M. A. Zaky and J. A. T. Machado, Numerical solution of the two-sided space–time fractional telegraph equation via Chebyshev tau approximation, J. Optim. Theory Appl. 174 (2017) 321–341, https://doi.org/10.1007/s10957-016-0863-8.
[9] V. R. Hosseini, W. Chen and Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem. 38 (2014) 31–39, https://doi.org/10.1016/j.enganabound.2013.10.009.
[10] S. Yüzbası and M. Karaçayır, A Galerkin-like scheme to solve two-dimensional telegraph equation using collocation points in initial and boundary conditions, Comput. Math. Appl. 74 (2017) 3242–3249, https://doi.org/10.1016/j.camwa.2017.08.020.
[11] S. Singh, V. K. Patel, V. K. Singh and E. Tohidi, Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions, Comput. Math. Appl. 75 (2018) 2280–2294, https://doi.org/10.1016/j.camwa.2017.12.003.
[12] D. Rostamy, M. Emamjome and S. Abbasbandy, A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation, Eur. Phys. J. Plus. 132 (2017) 1–11, https://doi.org/10.1140/epjp/i2017-11529-2.
[13] E. Shivanian, Spectral meshless radial point interpolation (SMRPI) method to twodimensional fractional telegraph equation, Math. Methods Appl. Sci. 39 (2016) 1820–1835,
https://doi.org/10.1002/mma.3604.
[14] N. Samadyar and F. Mirzaee, Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions, Eng. Anal. Bound. Elem. 101 (2019) 27–36, https://doi.org/10.1016/j.enganabound.2018.12.008.
[15] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys. 270 (2014) 402–415, https://doi.org/10.1016/j.jcp.2014.03.064.
[16] F. Mirzaee, S. Alipour and N. Samadyar, Numerical solution based on hybrid of blockpulse and parabolic functions for solving a system of nonlinear stochastic Itô–Volterra integral equations of fractional order, J. Comput. Appl. Math. 349 (2019) 157–171, https://doi.org/10.1016/j.cam.2018.09.040.
[17] F. Mirzaee and N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Methods Appl. Sci. 41 (2018) 4465–4479, https://doi.org/10.1002/mma.4907.
[18] R. Zeghdane, Numerical solution of stochastic integral equations by using Bernoulli operational matrix, Math. Comput. Simulation 165 (2019) 238–254, https://doi.org/10.1016/j.matcom.2019.03.005.
[19] F. Mirzaee, N. Samadyar and S. F. Hoseini, Euler polynomial solutions of nonlinear stochastic Itô–Volterra integral equations, J. Comput. Appl. Math. 330 (2018) 574–585, https://doi.org/10.1016/j.cam.2017.09.005.
[20] M. Dehghan and M. Shirzadi, Numerical solution of stochastic elliptic partial differential equations using the meshless method of radial basis functions, Eng. Anal. Bound. Elem. 50 (2015) 291–303, https://doi.org/10.1016/j.enganabound.2014.08.013.
[21] A. Barth and T. Stüwe, Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise, Math. Comput. Simul. 143 (2018) 215–225, https://doi.org/10.1016/j.matcom.2017.03.007.
[22] M. Dehghan and M. Shirzadi, A meshless method based on the dual reciprocity method for one-dimensional stochastic partial differential equations, Numer. Methods Partial Differential Equations 32 (2016) 292–306, https://doi.org/10.1002/num.21995.
[23] M. Dehghan and M. Shirzadi, Meshless simulation of stochastic advection–diffusion equations based on radial basis functions, Eng. Anal. Bound. Elem. 53 (2015) 18–26, https://doi.org/10.1016/j.enganabound.2014.11.011.
[24] F. Mirzaee and N. Samadyar, Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations, Eng. Comput. 36 (2020) 1673–1686, https://doi.org/10.1007/s00366-019-00789-y.
[25] M. H. Heydari, M. R. Hooshmandasl, G. Barid Loghmani and C. Cattani, Wavelets Galerkin method for solving stochastic heat equation, Int. J. Comput. Math. 93 (2016) 1579–1596, https://doi.org/10.1080/00207160.2015.1067311.
[26] Y. Salehi, M. T. Darvishi and W. E. Schiesser, Numerical solution of space fractional diffusion equation by the method of lines and splines, Appl. Math. Comput. 336 (2018) 465–480,
https://doi.org/10.1016/j.amc.2018.04.053.
[27] S. Kazem and M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput. 35 (2019) 229–241, https://doi.org/10.1007/s00366-018-0595-5.
[28] M. F. Causley, H. Cho, A. J. Christlieb and D. C. Seal, Method of lines transpose: high order L-stable O(N) schemes for parabolic equations using successive convolution, SIAM J. Numer. Anal. 54 (2016) 1635–1652, https://doi.org/10.1137/15M1035094.
[29] S. Hamdi, W. H. Enright, Y. Ouellet and W. E. Schiesser, Method of lines solutions of the extended Boussinesq equations, J. Comput. Appl. Math. 183 (2005) 327–342, https://doi.org/10.1016/j.cam.2004.12.036.
[30] P. Rahimkhani, Y. Ordokhani and P. M. Lima, An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets, Appl. Numer. Math. 145 (2019) 1–27,
https://doi.org/10.1016/j.apnum.2019.05.023.
[31] E. Keshavarz and Y. Ordokhani, A fast numerical algorithm based on the Taylor wavelets for solving the fractional integro-differential equations with weakly singular kernels, Math. Methods Appl. Sci. 42 (2019) 4427–4443, https://doi.org/10.1002/mma.5663.