[1] S. Bereg, Topological Indices in Combinatorial Chemistry, In: Bioinformatics Algorithms: Techniques and Applications, John Wiley & Sons, Inc., New York (2008) 419–463.
[2] D. Bonchev, O. V. Mekenyan and N.Trinajstic, Isomer discrimination by topological information approach, J. Comput. Chem. 2 (1981) 127–148, https://doi.org/10.1002/jcc.540020202.
[3] R. G. Brereton, A. R. Carvalho, M. Wasim, Y. Xu, L. Zhu and S. Zomer, Handbook of Chemoinformatics: from Data to Knowledge, edited by Johann Gasteiger, 1-4, Wiley-VCH, Weinheim, 2003.
[4] M. I. Huilgol, V. Sriram and K. Balasubramanian, Tensor and Cartesian products for nanotori, nanotubes and zig–zag polyhex nanotubes and their applications to 13C NMR spectroscopy, Mol. Phys. 119 (2021) Article: e1817594, https://doi.org/10.1080/00268976.2020.1817594.
[5] M. I. Huilgol, B. Divya and K. Balasubramanian, Distance degree vector and scalar sequences of corona and lexicographic products of graphs with applications to dynamic NMR and dynamics of nonrigid molecules and proteins, Theor. Chem. Acc. 140 (2021) 1–26, https://doi.org/10.1007/s00214-021-02719-y.
[6] R. Todeschini and V. Consonni, Descriptors from Molecular Geometry, in Handbook of Chemoinformatics: from Data to Knowledge John Wiley & Sons, (2003) 1004–1033.
[7] A. Mohajeri, P. Manshour and M. Mousaee, A novel topological descriptor based on the expanded Wiener index: applications to QSPR/QSAR studies, Iranian J. Math. Chem. 8 (2017) 107–135, https://doi.org/10.22052/IJMC.2017.27307.1101.
[8] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, https://doi.org/10.1021/ja01193a005.
[9] A. T. Balaban, Highly discriminating distance-based topological index, Chem. Phys. Lett. 89 (1982) 399–404, https://doi.org/10.1016/0009-2614(82)80009-2.
[10] A. T. Balaban and M. Randic, Coding canonical clar structures of polycyclic benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 82 (2019) 139–162.
[11] A. A. Dobrynin, A simple formula for the calculation of the Wiener index of hexagonal chains, Comput. Chem. 23 (1999) 43–48, https://doi.org/10.1016/S0097-8485(98)00025-4.
[12] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249, https://doi.org/10.1023/A:1010767517079.
[13] A. A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert, Wiener index of Hexagonal systems, Acta Appl. Math. 72 (2002) 247–294, https://doi.org/10.1023/A:1016290123303.
[14] V. Mathad, H. N. Sujatha and S. Puneeth, Amplified eccentric connectivity index of graphs, TWMS J. App. and Eng. Math. 12 (2022) 1469–1479.
[15] A. T. Balaban, Distance Connectivity Index, Chem. Phys. Lett. 89 (1982) 399–404.
[16] D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235–250, https://doi.org/10.1007/BF01164638.
[17] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087–1089, https://doi.org/10.1021/ci00021a009.
[18] G. Caporossi, I. Gutman, P. Hansen and L. Pavlovic, Graphs with maximum connectivity index, Comput. Biol. Chem. 27 (2003) 85–90, https://doi.org/10.1016/S0097-8485(02)00016-5
[19] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. 10 (1998) 849–855.
[20] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total ' electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538, https://doi.org/10.1016/0009-2614(72)85099-1.
[21] A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086, https://doi.org/10.1021/ci00021a008.
[22] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Math. 242 (2002) 41–54, https://doi.org/10.1016/S0012-365X(00)00456-8.
[23] S. Klavzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996) 45–49, https://doi.org/10.1016/0893-9659(96)00071-7.
[24] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282, https://doi.org/10.1021/ci960049h.
[25] X. Li, Y. Mao and I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. - Graph Theory 36 (2016) 455–465, https://doi.org/10.7151/dmgt.1868.
[26] Y. Mao and K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem. 79 (2018) 779–794.
[27] Y. Mao, Steiner Harary index, Kragujevac J. Math. 42 (2018) 29–39, https://doi.org/10.5937/KgJMath1801029M.
[28] J. Yang and F. Xia, The eccentric connectivity index of dendrimers, Int. J. Contemp. Math. Sciences 5 (2010) 2231–2236.
[29] A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of a nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561–4566, https://doi.org/10.1016/j.cam.2010.03.001.
[30] B. Eskender and E. Vumar, Eccentric connectivity index and eccentric distance sum of some graph operations, Trans. Comb. 2 (2013) 103–111, https://doi.org/10.22108/TOC.2013.2839.
[31] M. Azari, A study of a new variant of the eccentric connectivity index for composite graphs, J. Discrete Math. Sci. Cryptogr. 25 (2022) 2583–2596, https://doi.org/10.1080/09720529.2021.1886732.
[32] G. Yu and X. Li, Connective Steiner 3-eccentricity index and network similarity measure, Appl. Math. Comput. 386 (2020) p. 125446, https://doi.org/10.1016/j.amc.2020.125446.
[33] F. Buckley and E Harary, Distance in graphs, Addison-Wesley, Redwood City, California, USA. 1990.