The Matrix Transformation Technique for the Time‎- ‎Space Fractional Linear Schrödinger Equation

Document Type : Research Paper

Authors

1 Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, South Mehrabad, Tehran, Iran

2 Faculty of Basic Sciences‎, ‎Shahid Sattari Aeronautical University of Science and Technology‎, ‎South Mehrabad‎, ‎Tehran‎, ‎Iran

Abstract

‎This paper deals with a time-space fractional Schrödinger equation with homogeneous Dirichlet boundary conditions‎. ‎A common strategy for discretizing time-fractional operators is finite difference schemes‎. ‎In these methods‎, ‎the time-step size should usually be chosen sufficiently small‎, ‎and subsequently‎, ‎too many iterations are required which may be time-consuming‎.
‎To avoid this issue‎, ‎we utilize the Laplace transform method in the present work to discretize time-fractional operators‎. ‎By using the Laplace transform‎, ‎the equation is converted to some time-independent problems‎. ‎To solve these problems‎, ‎matrix transformation and improved matrix transformation techniques are used to approximate the spatial derivative terms which are defined by the spectral fractional Laplacian operator‎. ‎After solving these stationary equations‎, ‎the numerical inversion of the Laplace transform is used to obtain the solution of the original equation‎. ‎The combination of finite difference schemes and the Laplace transform creates an efficient and easy-to-implement method for time-space fractional Schrödinger equations‎. ‎Finally‎, ‎some numerical experiments are presented and show the applicability and accuracy of this approach‎.

Keywords

Main Subjects


[1] I. Podlubny, Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, 198, Elsevier 1998.
[2] M. Dehghan, M. Abbaszadeh and A. Mohebbi, The numerical solution of the two–dimensional sinh-Gordon equation via three meshless methods, Eng. Anal. Bound. Elem. 51 (2015) 220–235, https://doi.org/10.1016/j.enganabound.2014.10.015.
[3] M. Abbaszade and A. Mohebbi, Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry, Iranian J. Math. Chem. 3 (2012) 195–220, https://doi.org/10.22052/IJMC.2012.5147.
[4] R. Akbari and L. Navaei, Fractional dynamics of infectious disease transmission with optimal control, Math. Interdisc. Res. 9 (2024) 199–213, https://doi.org/10.22052/MIR.2023.253000.1410.
[5] M. Bisheh-Niasar, The effect of the Caputo fractional derivative on polynomiography, Math. Interdisc. Res. 8 (2023) 347–358.
[6] M. Abbaszadeh, Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation, Appl. Math. Lett. 88 (2019) 179–185, https://doi.org/10.1016/j.aml.2018.08.024.
[7] M. Abbaszadeh, A. Bagheri Salec and S. Kamel Abd Al-Khafaji, The effect of fractionalorder derivative for pattern formation of Brusselator reaction–diffusion model occurring in chemical Reactions, Iranian J. Math. Chem. 14 (2023) 243–269.
[8] M. Abbaszadeh, M. A. Zaky, A. S. Hendy and M. Dehghan, Supervised learning and meshless methods for two-dimensional fractional PDEs on irregular domains, Math. Comput. Simulation 216 (2024) 77–103, https://doi.org/10.1016/j.matcom.2023.08.008.
[9] D. J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[10] A. Mohebbi, M. Abbaszadeh and M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37 (2013) 475–485, https://doi.org/10.1016/j.enganabound.2012.12.002.
[11] Q. Liu, F. Zeng and C. Li, Finite difference method for time-spacefractional Schrödinger equation, Int. J. Comput. Math. 92 (2015) 1439–1451, https://doi.org/10.1080/00207160.2014.945440.
[12] M. P. Andersson, M. N. Jones, K. V. Mikkelsen, F. You and S. S. Mansouri, Quantum computing for chemical and biomolecular product design, Curr. Opin. Chem. Eng. 36 (2022) p. 100754, https://doi.org/10.1016/j.coche.2021.100754.
[13] L. Nanni, Investigating proton tunneling dynamics in the time-dependent Schrödinger equation, J. Comput. Chem. 45 (2024) 1614–1623, https://doi.org/10.1002/jcc.27348.
[14] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000) 298–305, https://doi.org/10.1016/S0375-9601(00)00201-2.
[15] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66 (2002) p. 056108, https://doi.org/10.1103/PhysRevE.66.056108.
[16] M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45 (2004) 3339–3352, https://doi.org/10.1063/1.1769611.
[17] B. N. Narahari Achar, B. T. Yale and J.W. Hanneken, Time fractional Schrödinger equation revisited, Adv. Math. Phys. 2013 (2013) p. 290216, https://doi.org/10.1155/2013/290216.
[18] J. Dong and M. Xu, Space–time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl. 344 (2008) 1005–1017, https://doi.org/10.1016/j.jmaa.2008.03.061.
[19] S. Fouladi, M. Kohandel and B. Eastman, A comparison and calibration of integer and fractional-order models of COVID-19 with stratified public response, Math. Biosci. Eng. 19 (2022) 12792–12813, https://doi.org/10.3934/mbe.2022597.
[20] M. Dehghan, J. Manafian and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Naturforsch. 65a (2010) 935–949.
[21] M. Dehghan, J. Manafian and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ. 26 (2010) 448–479, https://doi.org/10.1002/num.20460.
[22] W. Deng, Finite element method for the space and time fractional Fokker–Planck equation, SIAM J. Numer. Anal. 47 (2009) 204–226, https://doi.org/10.1137/080714130.
[23] A. Saadatmandi and M. Dehghan, A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl. 62 (2011) 1135–1142, https://doi.org/10.1016/j.camwa.2011.04.014.
[24] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010) 1326–1336, https://doi.org/10.1016/j.camwa.2009.07.006.
[25] H. Liao, Z. Sun and H. Shi, Error estimate of fourth-order compact scheme for linear Schrödinger equations, SIAM J. Numer. Anal. 47 (2010) 4381–4401, https://doi.org/10.1137/080714907.
[26] T. Wang, B. Guo and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys. 243 (2013) 382–399, https://doi.org/10.1016/j.jcp.2013.03.007.
[27] M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun. 181 (2010) 43–51, https://doi.org/10.1016/j.cpc.2009.08.015.
[28] A. Mohebbi, Fourth-order numerical method for the Riesz space fractional diffusion equation with a nonlinear source term, Comput. Methods Differ. Equ. 9 (2021) 736–748, https://doi.org/10.22034/CMDE.2020.36930.1643.
[29] G. Karamali, M. Abbaszadeh and M. Dehghan, The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrödinger equation and Schrödinger-Boussinesq system, Comput. Methods Differ. Equ. 6 (2018) 215–237.
[30] W. Fan and H. Qi, An efficient finite element method for the two-dimensional nonlinear time–space fractional Schrödinger equation on an irregular convex domain, Appl. Math. Lett. 86 (2018) 103–110, https://doi.org/10.1016/j.aml.2018.06.028.
[31] M. Uddin, K. Kamran, M. Usman and A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech. 19 (2018) 221–225, https://doi.org/10.1080/15502287.2018.1472150.
[32] M. Uddin, K. Kamran and A. Ali, A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem. 92 (2018) 108–113, https://doi.org/10.1016/j.enganabound.2017.10.021.
[33] J. A. C.Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp. 76 (2007) 1341–1356.
[34] D. Sheen, I. H. Sloan and V. Thomée, Aparallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003) 269–299, https://doi.org/10.1093/imanum/23.2.269.
[35] D. Sheen, I. H. Sloan and V. Thomée, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math. Comp. 69 (2000) 177–195.
[36] W. McLean, I. H. Sloan and V. Thomée, Time discretization via Laplace transformation of an integro-differential equation of parabolic type, Numer. Math. 102 (2006) 497–522, https://doi.org/10.1007/s00211-005-0657-7.
[37] W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal. 24 (2004) 439–463, https://doi.org/10.1093/imanum/24.3.439.
[38] Q. T. Le Gia and W. McLean, Numerical solution of a parabolic equation on the sphere using Laplace transforms and radial basis functions, ANZIAM J. Electron. Suppl. 52 (2010) 89–102, https://doi.org/10.21914/anziamj.v52i0.3922.
[39] Q. T. Le Gia and W. McLean, Solving the heat equation on the unit sphere via Laplace transforms and radial basis functions, Adv. Comput. Math. 40 (2014) 353–375, https://doi.org/10.1007/s10444-013-9311-6.
[40] B. A. Jacobs, High-order compact finite difference and Laplace transform method for the solution of time-fractional heat equations with Dirichlet and Neumann boundary conditions, Numer. Methods Partial Differ. Equ. 32 (2016) 1184–1199, https://doi.org/10.1002/num.22046.
[41] H. Mohammadi-Firouzjaei, H. Adibi and M. Dehghan, Local discontinuous Galerkin method for distributed-order time-fractional diffusion-wave equation: application of Laplace transform, Math. Methods Appl. Sci. 44 (2021) 4923–4937,
https://doi.org/10.1002/mma.7077.
[42] H. Mohammadi-Firouzjaei, M. Adibi and H. Adibi, Local discontinuous Galerkin method for the numerical solution of fractional compartmental model with application in pharmacokinetics, J. Math. Model. 10 (2022) 247–261, https://doi.org/10.22124/JMM.2021.20561.1790.
[43] K. Kamran, M. Uddin and A. Ali, On the approximation of time-fractional telegraph equations using localized kernel-based method, Adv. Difference Equ. 2018 (2018) 1–14, https://doi.org/10.1186/s13662-018-1775-8.
[44] M. Ili´c, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal. 8 (2005) 323–341.
[45] M. Ili´c, F. Liu , I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) – with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006) 333–349.
[46] Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010) 200–218, https://doi.org/10.1016/j.apm.2009.04.006.
[47] H. F. Ding and Y. X. Zhang, New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl. 63 (2012) 1135–1146, https://doi.org/10.1016/j.camwa.2011.12.028.
[48] H. P. Bhatt, A. Q. M. Khaliq and K. M. Furati, Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions, Numer. Algorithms 83 (2020) 1373–1397, https://doi.org/10.1007/s11075-019-00729-3.
[49] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal. 47 (2009) 1760–1781, https://doi.org/10.1137/080730597.
[50] L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems, SIAM J. Sci. Comput. 39 (2017) A214–A228, https://doi.org/10.1137/16M106471.
[51] Q. Yang, I. Turner, F. Liu and M. Ili´c, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput. 33 (2011) 1159–1180, https://doi.org/10.1137/100800634.
[52] M. Zheng, F. Liu and Z. Jin, The global analysis on the spectral collocation method for time fractional Schrödinger equation, Appl. Math. Comput. 365 (2020) p. 124689, https://doi.org/10.1016/j.amc.2019.124689.
[53] J. Ma and H. Chen, Local error estimate of L1 scheme on graded mesh for time fractional Schrödinger equation, J. Appl. Math. Comput. 70 (2024) 3161–3174, https://doi.org/10.1007/s12190-024-02091-7.
[54] A. Liemert and A. Kienle, Fractional Schrödinger equation in the presence of the linear potential, Mathematics 4 (2016) p. 31, https://doi.org/10.3390/math4020031.
[55] J. L. A. Dubbeldam, Z. Tomovski and T. Sandev, Space-time fractional Schrödinger equation with composite time fractional derivative, Fract. Calc. Appl. Anal. 18 (2015) 1179–1200, https://doi.org/10.1515/fca-2015-0068.
[56] D. Khojasteh Salkuyeh, On the finite difference approximation to the convection–diffusion equation, Appl. Math. Comput. 179 (2006) 79–86, https://doi.org/10.1016/j.amc.2005.11.078.
[57] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42, https://doi.org/10.1016/0021-9991(92)90324-R.
[58] H. Wang, Y. Zhang, X. Ma, J. Qiu and Y. Liang, An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions, Comput. Math. Appl. 71 (2016) 1843–1860, https://doi.org/10.1016/j.camwa.2016.02.022.
[59] W. McLean and V. Thomée, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl. 22 (2010) 57–94, https://doi.org/10.1216/JIE-2010-22-1-57.
[60] W. McLean and V. Thomée, Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation, IMA J. Numer. Anal. 30 (2010) 208–230, https://doi.org/10.1093/imanum/drp004.
[61] M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math. 51 (2004) 289–303, https://doi.org/10.1016/j.apnum.2004.06.015.