Computation of Topological Indices of Binary and Ternary Trees using Algorithmic Approach

Document Type : Research Paper

Authors

1 Deanship of Human Resources and Information Technology, Jazan University, Jazan, Saudi Arabia

2 Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia

3 Division of Computing, Analytics and Mathematics School of Science and Engineering University of Missouri- Kansas City, MO 64110, USA

4 Special Interest Group of Modeling and Data Analytics (SIGMDA), Faculty of Computer Science and Mathematics, Universiti Malaysia, Terengganu 21030 Kuala Nerus, Terengganu, Malaysia

Abstract

In this paper‎, ‎algorithms are used to compute distance-based topological indices for the Complete Binary Tree (CBT) and the Complete Ternary Tree (CTT)‎. ‎Computation of distance-based topological indices is complex for varied heights of CBT and CTT‎. ‎Hence designed algorithms to compute distance between any-to-any vertex made this possible to compute the required topological indices for CBT and CTT‎. ‎The distance calculator algorithm designed for this study can also be customized in digital chemical structures‎, ‎mathematical chemistry‎, ‎network traffic control in wireless networks‎, ‎search applications‎, ‎high bandwidth routing‎, ‎parse construction in compilers‎, ‎and memory management.

Keywords

Main Subjects


[1] H. Hasanzadeh Bashir and K. Ahmadidelir, Some structural graph properties of the noncommuting graph of a class of finite Moufang loops, Electron. J. Graph Theory Appl. 8 (2020) 319–337, https://doi.org/10.5614/ejgta.2020.8.2.9.
[2] K. H. Rosen, Discrete Mathematics and its Applications, McGraw Hill, seventh edition, 2011.
[3] A. U. Khan, Descriptors and their selection methods in QSAR analysis: paradigm for drug design, Drug Discov. Today 21 (2016) 1291–1302, https://doi.org/10.1016/j.drudis.2016.06.013.
[4] I. Duman and B. Tutmez, A topological index-based new smoother for spatial interpolation, Earth Sci. Inform. 13 (2020) 555–564, https://doi.org/10.1007/s12145-020-00447-8.
[5] X. Zuo, J. B. Liu, H. Iqbal, K. Ali and S. T. R. Rizvi, Topological indices of certain transformed chemical structures, J. Chem. 2020 (2020) Article ID 3045646, https://doi.org/10.1155/2020/3045646.
[6] M. Arockiaraj, J. Clement, D. Paul and K. Balasubramanian, Quantitative structural descriptors of sodalite materials, J. Mol. Struct. 1223 (2021) p. 128766, https://doi.org/10.1016/j.molstruc.2020.128766.
[7] S. Ahmadi, S. Lotfi and P. Kumar, A Monte Carlo method based QSPR model for prediction of reaction rate constants of hydrated electrons with organic contaminants, SAR QSAR Environ. Res. 31 (2020) 935–950, https://doi.org/10.1080/1062936X.2020.1842495.
[8] S. Shirakol, M. Kalyanshetti and S. M. Hosamani, QSPR analysis of certain distance based topological indices, Appl. Math. Nonlinear Sci. 4 (2019) 371–385, https://doi.org/10.2478/AMNS.2019.2.00032.
[9] K. Pattabiraman, Degree and distance based topological indices of graphs, Electron. Notes Discrete Math. 63 (2017) 145–159, https://doi.org/10.1016/j.endm.2017.11.009.
[10] F. Ali, M. Salman, A. Hafeez and S. Huang, On computation of some distance-based topological indices on circulant networks-II, J. Inf. Optim. Sci. 39 (2018) 759–782, https://doi.org/10.1080/02522667.2016.1223588.
[11] Z. Chen, Z. Yin, J. Cui, J. Yang and Z. Tang, DNA switching circuits based on binary tree, IEEE 9 (2021) 94033 – 94039, https://doi.org/10.1109/ACCESS.2021.3091010.
[12] Z. Huang, Q. Shi, J. Guo, F. Meng, Y. Zhang, Y. Lu, Z. Qian, X. Li, N. Zhou, Z. Zhang and X. Zhu, Binary tree-inspired digital dendrimer, Nat. Commun. 10 (2019) p. 1918, https://doi.org/10.1038/s41467-019-09957-6.
[13] A. A. Dobrynin and A. Iranmanesh, Wiener index of edge thorny graphs of catacondensed benzenoids, Mathematics 8(2020) p. 467, https://doi.org/10.3390/math8040467.
[14] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20, https://doi.org/10.1021/ja01193a005.
[15] M. R. Farahani, R. Kanna and W. Gao, The Schultz, modified Schultz indices and their polynomials of the Jahangir graphs Jn;m for integer numbers n = 3, m  3, Asian J. Appl. Sci. 3 (2015) 823–827.
[16] F. Es-sabery and A. Hair, A MapReduce C4.5 decision tree algorithm based on fuzzy rule-based system, Fuzzy Inf. Eng. 11 (2019) 446–473, https://doi.org/10.1080/16168658.2020.1756099.
[17] S. Katoch, S. S. Chauhan and V. Kumar, A review on genetic algorithm: past, present, and future, Multimed. Tools Appl. 80 (2021) 8091–8126, https://doi.org/10.1007/s11042-020-10139-6.
[18] A. Slowik and H. Kwasnicka, Evolutionary algorithms and their applications to engineering problems, Neural Comput. & Applic. 32 (2020) 12363–12379, https://doi.org/10.1007/s00521-020-04832-8.
[19] G. Xin and D. Fei-qi, Complete ternary tree-based data aggregation routing algorithm for wireless sensor networks, In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). Shengyang, China: IEEE, (2013) 578–581, https://doi.org/10.1109/MEC.2013.6885129.
[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts London, England, 3rd Edition, 2009.
[21] T. Réti, A. Ali and I. Gutman, On bond-additive and atoms-pair-additive indices of graphs, Electron. J. Math. 2 (2021) 52–61, https://doi.org/10.47443/ejm.2021.0033.
[22] E. Goldoni and P. Gamba, PRISM: a novel protocol for real-time synchronous acquisitions in WSNs, International Journal of Sensors, Wireless Communications and Control 1 (2011) 1–8.