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Abstract

Let R be the commutative ring R = Zp2 [x]/〈x2〉 with
identity and Z∗(R) be the set of all non-zero zero-divisors of
R. Then, Γ(R) is said to be a zero-divisor graph if and only if
a · b = 0 where a, b ∈ V (Γ(R)) = Z∗(R) and (a, b) ∈ E(Γ(R)).
Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix,
and let µ1, µ2, . . . , µn be the eigenvalues of the Laplacian matrix
of Γ(R). Then we discuss the energy E(Γ(R)) =

∑n
i=1|λi| and

the Laplacian energy LE(Γ(R)) =
∑n

i=1

∣∣µi − 2m
n

∣∣ where n and
m are the order and size of Γ(R).

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
A graph G consists of a pair (V (G), E(G)), where V (G) is a non-empty set whose elements

are called vertices and E(G) is a set of unordered pairs of distinct elements of V (G). The
elements of E(G) are called edges of the graph G. In the graph G, the number of edges that
are incident to a vertex v is called its degree, and it is denoted by d(v).The zero-divisors are
one of the most intriguing aspects of a ring. Rare’s zero-divisors are defined as two non-zero
elements of R, say x and y, whose product is zero. An integral domain is a ring that does
not have any non-zero zero divisors. Meanwhile, probability theory has been widely applied to
determine certain properties of finite groups. The results are then used to calculate a type of
probability in rings, namely the likelihood that two elements of a ring have a product of zero
[1–3]. Let R be a commutative ring with Z∗(R) is the set of all non-zero divisors considered
vertices, and there is an edge defined between x and y by having a zero product. Istvan Beck
[4] presented the idea of the zero-divisor graphs Γ0(R) of commutative rings and included 0 in
the definition of the term. His primary focus was on the various hues that these rings could
take on. Later on, authors of [5, 6] modified the definition of the zero-divisor graphs Γ(R) by
excluding 0 of the ring from the zero-divisor set. Additionally, they defined the edges between
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two non-zero zero-divisors if and only if their product is zero. In the field of mathematics, the
concept of matrix energy has been discussed for quite some time [7–9]. Furthermore, it has been
demonstrated to have a number of practical applications in other branches of science, such as
chemistry and physics. Given the prevalence of matrices in the field of research on complex
networks, it is only natural to investigate whether or not matrix energies can be applied to the
context of networks.

Matrix computations have many uses outside of mathematics. It is helpful when attempting
to solve linear equations. Matrices are extremely valuable objects that can be discovered in
many different places. Matrix mathematics has applications in many branches of science and
mathematics. Engineering mathematics affects nearly every facet of our daily lives.

In this article, we will define matrices, discuss their applications, and explore some common
matrix-based problem-solving techniques. In the field of computer graphics, they are employed
to bring a three-dimensional object into the realm of a two-dimensional display. In probability
theory and statistics, stochastic matrices are used to explain collections of probabilities; for
instance, they are used in the page rank algorithm that determines how websites are ranked
in a Google search. Separate research was conducted on algebraic structures due to the close
connections they share with representation theory and number theory, as well as the significant
role they play in combinatorics. As a direct result of the extensive mathematical research that
has been conducted in this field, finite rings and fields have received a significant amount of
attention for the applications that they have to cryptography and coding theory [10–13]. Ring
theory has been studied in many research projects in mathematics, primarily in the area of al-
gebra, and it has been applied in various fields such as [14, 15] computer science, cryptography,
and image segmentation.

2 Results and discussion

2.1 Energy

In 1978, Ivan Gutman defined [16] graph energy for the first time. However, the motivation
behind his definition came much earlier, in the 1930s, when Erich Huckel proposed the now-
famous Huckel Molecular Orbital Theory. Chemists can make accurate estimates of the energies
connected to the electron orbitals in the conjugated hydrocarbon subclass of molecules using
Huckel’s method [17]. The method works on the assumption that the Hamiltonian operator
is a simple linear combination of specific orbitals, and it solves for the desired energies using
the time-independent Schrodinger equation. In 1956, Gunthard and Primes made the discovery
that the matrix used in the Huckel method is a first-degree polynomial of the adjacency matrix
associated with a particular graph that is related to the molecule that is being investigated.
The spectrum of the ordinary graph spectrum, also known as the adjacency matrix spectrum,
is what is meant when people talk about the graph energy [16, 17]. The adjacency matrix
A(Γ(R)) represented by graph vertices, with value 1 or 0 in (ai, bj) represents whether ai and
bj are adjacent or not. As said before, the concept of graph energy E(Γ(R)) is defined as the
sum of the adjacency matrix’s absolute eigenvalues. It is related to the total π−electron energy
[16] in Huckel theory by a molecular graph, then E(Γ(R)) =

∑n
i=1|λi|.

During the preceding decades, the parameter E(Γ(R)) and its bounds were the subject of
extensive research and study. For illustration purposes, the reader is directed to [16, 17].
McClelland [3] obtained the first graph-energy result in 1971 that addressed the upper bound
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for E(Γ(R)) with the order n and the size m:

E(Γ(R)) ≤
√

2mn.

Koolen and Moulton [18] made some improvements to the bound in the above equation. They
came to the conclusion that if Γ(R) is a graph with an order of n and a size of m, and if 2m > n,
then:

E(Γ(R)) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)
.

McClelland also derived a lower bound for E(Γ(R)) in terms of n,m and |A(Γ(R))| (determinant
of adjacency matrix A(Γ(R))) in [3]:

E(Γ(R)) ≥
√

2m+ n(n− 1)|A(Γ(R))| 2n .

A simplified lower bound involving only the number of edges m in [19] was obtained almost
thirty years later by Caporossi G et al. :

E(Γ(R)) ≥ 2
√
m.

Theorem 2.1. Let Γ(R) be the zero-divisor graph of R = Zp2 [x]/〈x2〉 with prime p ≥ 3,
then

A(Γ(R)) =



N1 N N N . . . N
N N2 O O . . . O
N O N2 O . . . O
N O O N3 . . . O
...

...
...

...
. . .

...
N O O O . . . N3


,

where N1 =
(
N − I

)
(p−1), N2 =

(
N − I

)
p(p−1), N3 =

(
Op(p−1) Np(p−1)
Np(p−1) Op(p−1)

)
2p(p−1)

, O is zero

matrix and N is a matrix of ones.

Proof. Let R = Zp2 [x]/〈x4〉 for prime p ≥ 3, then the set {ax + b; a, b ∈ Zp2} has p4
elements.
Now, φ(p4) = p3(p−1). Let Z∗(R)−{0} be set of all non-zero zero divisors of R = p4−p3(p−
1)− 1 = p3 − 1 and let the edge set be defined by E(Γ(R)) = {a · b = 0;∀a, b ∈ Z∗(R)}.
Then the zero-divisor graph Γ(R) is of order (p3− 1) and of size 1

2 (p5 + p4− 3p3− 2p2 + p+ 2),
and we have:

V (Γ(R)) = {p, 2p, ..., (p− 1)p, x, 2x, 3x, ..., (p2 − 1)x, x+ p, x+ 2p, ..., x+ (p− 1)p,

2x+ p, 2x+ 2p, ..., 2x+ (p− 1)p, ..., (p2 − 1)x+ p, (p2 − 1)x+ 2p, ..., (p2 − 1)x+ (p− 1)p}.

Thus we obtain |V (Γ(R))| = p3 − 1. Now the vertex set has been divided by

V1 = {lpx|l = 1, 2, . . . (p− 1) & p - l},
V2 = {lp, kx, lpx+ lp|k = 1, 2, . . . (p2 − 1) & p - k},
V3 = {kx+ lp| & p - l, k}.
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Also V2 and V3 are subdivided by

V21 = {kx},
V22 = {lp, lpx+ lp},
V31 = {kx+ p, kx+ p(p− 1)},
V32 = {kx+ 2p, kx+ p(p− 2)},
...
V3(p−1)/2 = {kx+ (p− 1)/2p, kx+ p(p+ 1)/2}.

The following conditions define criteria for determining adjacency among various sets of vertices
for the zero-divisor graph Γ(R):

1. For V1: If the product of any two distinct elements lpx and l′px is divisible by x2 for all
1 ≤ l < l′ ≤ p− 1, then every vertex is adjacent to each other in V1. This means that any pair
of distinct vertices in V1 is adjacent to each other.

2. For V21: Like V1, if the product of any two distinct elements kx and k′x is divisible by
x2 for all 1 ≤ k < k′ ≤ p2 − 1, then every vertex is adjacent to each other in V21.

3. For V22: Here, if the product of any two distinct elements lpx+ lp and l′px+ l′p is either
divisible by x2 or p2 for all 1 ≤ l < l′ ≤ p − 1, then every vertex is adjacent to each other in
V22. This implies that any pair of distinct vertices in V22 is adjacent to each other, and the
product of their elements is divisible by either x2 or p2.

4. For V31 to V3(p−1)/2: Finally, if the product of any two distinct elements kx + p and
k′x+ p(p− 1) is either divisible by x2 or p2 for all 1 ≤ k < k′ ≤ p2 − 1, then kx+ p is adjacent
to k′x+ p(p− 1) in V31. Additionally, no two kx+ p, k′x+ p, or kx+ p(p− 1), k′x+ p(p− 1)
have a product divisible by x2 or p2 in V31, ensuring non-adjacency. Similar arguments extend
to V32, V33, and so on, up to V3(p−1)/2.
As a result, we have an adjacency matrix by first considering the elements of V1, V2 and then
V3. Therefore, the adjacency matrix of Γ(R) is

A(Γ(R)) =



V1 V21 V22 V31 . . . V3(p−1/2)

V1 N1 N N N . . . N

V21 N N2 O O . . . O

V22 N O N2 O . . . O

V31 N O O N3 . . . O

...
...

...
...

...
. . .

...
V3(p−1/2) N O O O . . . N3


(1)

=



N1 N(p−1)×p(p−1) N(p−1)×p(p−1) N(p−1)×2p(p−1) . . . N(p−1)×2p(p−1)

Np(p−1)×(p−1) N2 Op(p−1)×p(p−1) Op(p−1)×2p(p−1) . . . Op(p−1)×2p(p−1)

Np(p−1)×(p−1) Op(p−1)×p(p−1) N2 Op(p−1)×2p(p−1) . . . Op(p−1)×2p(p−1)

N2p(p−1)×(p−1) O2p(p−1)×p(p−1) O2p(p−1)×p(p−1) N3 . . . O2p(p−1)×2p(p−1)

...
...

...
...

. . .
...

N2p(p−1)×(p−1) O2p(p−1)×p(p−1) O2p(p−1)×p(p−1) O2p(p−1)×2p(p−1) . . . N3


.

where N1 =
(
N − I

)
(p−1), N2 =

(
N − I

)
p(p−1), N3 =

(
Op(p−1) Np(p−1)
Np(p−1) Op(p−1)

)
2p(p−1)

, O is zero

matrix and N is a matrix of ones. �



Iranian Journal of Mathematical Chemistry 15 (2) (2024) 79− 90 83

Theorem 2.2. Let Γ(R) be the zero-divisor graph of R = Zp2 [x]/〈x2〉 with prime p ≥ 3,
then E(Γ(R)) ≥ p3 + 2p2 − p− 8.

Proof. Let Γ(R) be zero-divisor graph with prime p ≥ 3 of R = Zp2 [x]/〈x2〉. Then, by using
(1) and Theorem 2.1, the characteristic equation of A(Γ(R)) can be written as:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1 − λI N N N . . . N
N N2 − λI O O . . . O
N O N2 − λI O . . . O
N O O N3 − λI . . . O
...

...
...

...
. . .

...
N O O O . . . N3 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus λp
3−2p2+1[λ+ 1]2p

2−p−4[λ− (p2− p)]
p−3
2 [λ+ (p2− p)]

p−1
2 [λ− (p2− p− 1)][λ3− (2p2− p−

3)λ2 + (p3 − 5p2 + 3p+ 2)λ+ p(p− 1)(p4 − 2p3 + p2 + 2p− 3)] = 0.

Since λ3 − (2p2 − p− 3)λ2 + (p3 − 5p2 + 3p+ 2)λ+ p(p− 1)(p4 − 2p3 + p2 + 2p− 3) = 0,
we have α+ β + γ = (2p2 − p− 3) and also we know |α|+|β|+|γ| > α+ β + γ. So,

E(Γ(R)) =

n∑
i=1

∣∣λi∣∣
= (2p2 − p− 4)|1|+ p− 3

2

∣∣p2 − p∣∣+
p− 1

2

∣∣p2 − p∣∣+
∣∣p2 − p− 1

∣∣+ |α|+ |β|+ |γ|.

Therefore,

E(Γ(R)) ≥ (p3 − 5) + α+ β + γ

≥ (p3 − 5) + (2p2 − p− 3) = p3 + 2p2 − p− 8.

�

2.2 Laplacian energy
The spectral theory [20, 21] of the Laplacian matrix is another well-developed aspect of alge-
braic graph theory. Gutman and Zhou defined a graph’s Laplacian energy in 2006 as the sum
of the absolute deviations (i.e., distance from the mean) of its Laplacian matrix’s [22] eigen-
values. Laplacian energy has been used in image processing and information theory, as well
as theoretical organic chemistry. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of
vertex degrees. Then the Laplacian matrix [21, 22] L(G) is the difference between the diago-
nal matrix’s vertex degrees and the adjacency matrix (i.e., L(G) = D(G) − A(G)). Also let
µ1, µ2, . . . , µn be the eigenvalues of the Laplacian matrix of the zero-divisor graph Γ(R). The
Laplacian energy [23, 24] of a zero-divisor graph is defined as LE(Γ(R)) =

∑n
i=1

∣∣∣µi − 2m
n

∣∣∣.
Let Γ(R) be a simple undirected graph of oder n and size m. The eigenvalues of the

adjacency matrix A(Γ(R)) of graph are known as eigenvalues of graph Γ(R). The set of
eigenvalues of the graph with their multiplicities is known as the spectrum of the graph. Hence

Spec(A(Γ(R))) =

(
λ1 λ2 · · · λn
m1 m2 · · · mn

)
.
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Also, the set of Laplacian eigenvalues µ1, µ2, . . . , µn of the graph with their multiplicities is
known as the Laplacian spectrum of the graph Γ(R). Hence

Spec(L(Γ(R))) =

(
µ1 µ2 · · · µn

m1 m2 · · · mn

)
.

The ordinary graph’s eigenvalues can meet the following conditions:

n∑
i=1

λi = 0 and
n∑

i=1

(λi)
2 = 2m.

The relations that are analogous for the Laplacian eigenvalues are as follows:

n∑
i=1

γi = 0 and
n∑

i=1

(γi)
2 = 2M,

where M = m+ 1
2

∑n
i=1(di − 2m

n )2 with di is the degree of the ith vertex of Γ(R). It is easy to
see that M ≥ m for all graphs Γ(R), and that M = m holds if and only if Γ(R) is a regular
graph. We have some bounds of Laplacian energy [20, 24] for Γ(R) as follows:

1. LE(Γ(R)) ≤
√

2Mn.

2. LE(Γ(R)) ≤ 2m
n +

√
(n− 1)[2M − ( 2m

n )2].

3. 2
√
M ≤ LE(Γ(R)) ≤ 2M , where M = m+ 1

2

∑n
i=1(di − 2m

n )2.

Theorem 2.3. Let Γ(R) be the zero-divisor graph of R = Zp2 [x]/〈x2〉 with prime p ≥ 3,
then

L(Γ(R)) =



D1 −N1 −N −N −N . . . −N
−N D2 −N2 O O . . . O
−N O D2 −N2 O . . . O
−N O O D3 −N3 . . . O
...

...
...

...
. . .

...
−N O O O . . . D3 −N3


.

Proof. Let R = Zp2 [x]/〈x2〉, then the set of all zero-divisors Z∗(R) − {0} is considered as
vertices, and there is an edge defined between x and y by having a zero product. Then Γ(R) is
of order (p3 − 1) and size 1

2 (p5 + p4 − 3p3 − 2p2 + p+ 2).
It’s clear to show that if a ∈ V1 then d(a) = p3−2. Also, if a ∈ V2 then d(a) = p2−2. Moreover,
if a ∈ V3 then d(a) = p2 − 1.

The adjacency matrix of Γ(R) is given in Equation (1). Also, the diagonal matrix of Γ(R) is
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D(Γ(R)) =



V1 V21 V22 V31 . . . V3(p−1)/2

V1 D1 O O O . . . O

V21 O D2 O O . . . O

V22 O O D2 O . . . O

V31 O O O D3 . . . O

...
...

...
...

...
. . .

...
C(p− 1/2) O O O O . . . D3


.

where
D1 =

(
(p3 − 2)I

)
(p−1), D2 =

(
(p2 − 2)I

)
p(p−1), D3 =

(
(p3 − 1)I Np(p−1)
Np(p−1) (p2 − 1)I

)
2p(p−1)

.

This complets the proof. �

Theorem 2.4. Let Γ(R) be the zero-divisor graph of R = Zp2 [x]/〈x2〉 with prime p ≥ 3,
then LE(Γ(R)) = (p−1)(2p5+p4−3p3+p2+5p+3)

p2+p+1 .

Proof. Let Γ(R) be the zero-divisor graph with prime p ≥ 3 of R = Zp2 [x]/〈x2〉. Then by
Theorem 2.3, the characteristic equation of L(Γ(R)) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D1 −N1 − µI −N −N −N . . . −N
−N D2 −N2 − µI O O . . . O
−N O D2 −N2 − µI O . . . O
−N O O D3 −N3 − µI . . . O
...

...
...

...
. . .

...
−N O O O . . . D3 −N3 − µI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Thus µ(µ− p+ 1)
(p−1)

2 (µ− p2 + 1)(2p
3−2p−1)(µ− 2p2 + p+ 1)

(p+1)
2 (µ− p3 + 1)(p−1) = 0. So,

Spec(L(Γ(R)) =

(
0 p− 1 p2 − 1 2p2 − p− 1 p3 − 1

1 p+1
2 p3 − 2p− 1 p−1

2 p− 1

)
.

Since m = 1
2 (p5 + p4 − 3p3 − 2p2 + p+ 2), and n = p3 − 1, we have

LE(Γ(R)) =

n∑
i=1

∣∣∣µi − 2m
n

∣∣∣
=
∣∣∣0− 2p4+2p3−p2−3p−2

p2+p+1

∣∣∣+
p+ 1

2

∣∣∣(p− 1)− 2p4+2p3−p2−3p−2
p2+p+1

∣∣∣
+ (p3 − 2p− 1)

∣∣∣(p2 − 1)− 2p4+2p3−p2−3p−2
p2+p+1

∣∣∣+
p− 1

2

∣∣∣(2p2 − p− 1)− 2p4+2p3−p2−3p−2
p2+p+1

∣∣∣
+ (p− 1)

∣∣∣(p3 − 1)− 2p4+2p3−p2−3p−2
p2+p+1

∣∣∣
=

(p− 1)(2p5 + p4 − 3p3 + p2 + 5p+ 3)

p2 + p+ 1
.

�



86 C. J. Rayer et al. / Computation of Some Graph Energies of the Zero Divisor....

2.3 Discussion of applications

Matrix energy is a concept that has been around in mathematics for a while, and it has been
shown to be useful in many different areas of science, including chemistry and physics. Given
the prevalence of matrices in the study of complex networks, it is only natural to investigate
the applicability of matrix energies in the context of networks. Complex networks, and social
networks in particular, exhibit a number of intriguing topological characteristics.
For example, If p = 3 then we got a graph Γ(Z9[x]/〈x2〉) (see Figure 1). The vertex set Γ(R)

Figure 1: Γ(Z9[x]/〈x2〉).

has been divided by

V1 = {3x, 6x},
V21 = {x, 2x, 4x, 5x, 7x, 8x},
V22 = {3, 6, 3x+ 3, 3x+ 6, 6x+ 3, 6x+ 6},
V31 = {2x+ 3, 5x+ 3, 8x+ 3, x+ 6, 4x+ 6, 7x+ 6},
V32 = {x+ 3, 4x+ 3, 7x+ 3, 2x+ 6, 5x+ 6, 8x+ 6}.
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It is clear that the adjacency matrix for the zero-divisor graph Γ(R) is

A(Γ(R)) =



V1 V21 V22 V31 V32

V1 N1 N2×6 N2×6 N2×12 N2×12

V21 N6×2 N2 O6×6 O6×12 O6×12

V22 N6×2 O6×6 N2 O6×12 O6×12

V31 N12×2 O12×6 O12×6 N3 O12×12

V32 N12×2 O12×6 O12×6 O12×12 N3


.

Thus λ10[λ+ 1]11[λ+ 6][λ− 5][λ3 − 12λ2 − 7λ+ 234] = 0, and

Spec(A(Γ(R)) =

(
0 −1 −6 5 −4.0435 5.4767 10.5667
10 11 1 1 1 1 1

)
, and E(Γ(R)) = 42.0869.

Also,

L(Γ(R)) =



V1 V21 V22 V31 V32

V1 D1 −N1 −N2×6 −N2×6 −N2×12 −N2×12

V21 −N6×2 D2 −N2 O6×6 O6×12 O6×12

V22 −N6×2 O6×6 D2 −N2 O6×12 O6×12

V31 −N12×2 O12×6 O12×6 D3 −N3 O12×12

V32 −N12×2 O12×6 O12×6 O12×12 D3 −N3


.

Thus µ(µ− p+ 1)
p−1
2 (µ− p2 + 1)(2p

3−2p−1)(µ− 2p2 + p+ 1)
p+1
2 (µ− p3 + 1)p−1 = 0,

Spec(L(Γ(R)) =

(
0 2 8 14 26
1 2 20 1 2

)
, and LE(Γ(R)) = 78.9231.

In the past, architects, animators, and engineers would draw their creations by hand;
today, they use computer graphics. The linear transformation of objects is very conveniently
represented by square matrices. In computer graphics, they allow for the projection of three-
dimensional images onto two-dimensional screens. A digital image is first viewed as a matrix
when working with graphics. The matrix’s rows and columns represent rows and columns of
pixels, while the numerical entries represent the colour values of the pixels.

Mathematical techniques like using matrices to manipulate a point are widely used in game
graphics. Graphs can also be expressed in the form of a matrix. Each cell in a matrix represents
a node in a graph, and the strength of the connection between two nodes is represented by the
value of their intersection. In graphics, matrix operations like translate, rotate, and pack are
frequently used. Data encryption through cryptography ensures that only authorised parties
have access to sensitive information. Video signals were not encrypted until recently. After
owners of satellites began losing money because videos could be viewed by anyone with a dish,
they began encrypting the video signals so that only those with video cyphers could decode
them.

If the key used to encrypt the data is itself not invertible, the resulting signal cannot be
decrypted and restored to its original form. Matrix algebra is used for this purpose. First, a
digital audio or video signal is converted into a numerical sequence that represents the time-
varying air-pressure changes that make up an acoustic audio signal. Filtering methods based on
matrix multiplication are employed. Wireless signals are modelled and optimised using matrices.
Information contained in signal matrices is extracted and processed for use in detection. Signal
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estimation and detection issues rely heavily on matrices. They are implemented in adaptive
filter design and the processing of signals from sensor arrays. Digital image processing and
representation both benefit from the use of matrices.

We are all aware of the significance of wireless communication to the telecommunications
sector. Sensor array signal processing has significant implications in many fields, including radar
signals and underwater surveillance, due to its emphasis on signal enumeration and source lo-
cation applications. Detecting and localising the radiating sources using the collected temporal
and spatial information from the sensors is the primary challenge in sensor array signal pro-
cessing. A dynamic graph is one that is, among other things, dynamic, heterogeneous, highly
transitive, has relatively short average distances between vertices, and is degree associative. In
addition, these characteristics vary widely among the many vertices that make up the network’s
components. Graph energy is the energetic potential of a network modelled as a symmetric ma-
trix. Different types of matrices (such as adjacency matrices, distance matrices, and Laplacian
matrices) produce different forms of energy when used to describe a network. The informational
value of graph energy is drastically reduced, and its interpretation becomes murky, when applied
to the matrix representation of an entire network. One could argue that high-energy networks
have a lot of potential storage space. Because of the stationary distribution of allocation, such
networks make it possible to allocate a sizable amount of resources without disruption. The
scientific community needs to dig deeper into this hypothesis. It should be obvious that the
usefulness of graph energy in describing the topology of chemical compounds or other relatively
small graphs does not naturally transfer to the realm of large complex networks. The topology
of moderately compact graphs is best described using graph energy.

3 Conclusion

In this paper, we studied the zero-divisor graph Γ(Zp2 [x]/〈x2〉) over the commutative ring
Zp2 [x]/〈x2〉 and discussed adjacency matrix and Laplacian matrix for zero-divisor graph. Fi-
nally, we investigated the graph energy and Laplacian energy of Γ(Zp2 [x]/〈x2〉) over the com-
mutative ring Zp2 [x]/〈x2〉.
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