[1] A. R. Meyer, Communication networks, In Mathematics for Computer Science, MIT Open Learning Library: Cambridge, MA, USA, 2010, Chapter 13, 253–272.
https://people. csail.mit.edu/meyer/mcs.pdf.
[2] P. J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
[3] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976) 191–195.
[4] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequ. Math. 59 (2000) 45–54. https://doi.org/10.1007/PL00000127.
[5] V. Chvátal, Mastermind, Combinatorica 3 (1983) 325–329,
https://doi.org/10.1007/BF02579188.
[6] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak and L. S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181, https://doi.org/10.1109/JSAC.2006.884015.
[7] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Graph. Image Process. 25 (1984) 113–121, https://doi.org/10.1016/0734-189X(84)90051-3.
[8] E. T. Baskoro and D. O. Haryeni, All graphs of order n >= 11 and diameter 2 with partition dimension n 3, Heliyon 6 (2020) p. e03694, https://doi.org/10.1016/j.heliyon.2020.e03694.
[9] N. Mehreen, R. Farooq and S. Akhter, On partition dimension of fullerene graphs, AIMS Math. 3 (2018) 343–352, https://doi.org/10.3934/Math.2018.3.343.
[10] B. Rajan, A. William, I. Rajasingh, C. Grigorious and S. Stephen, On certain networks with partition dimension three, In Proc. Int. Conf. Math., Eng. Bus. Manage. (2012) 169–172.
[11] M. C. Monica and S. Santhakumar, Partition dimension of rooted product graphs, Discrete Appl. Math. 262 (2019) 138–147, https://doi.org/10.1016/j.dam.2019.02.007.
[12] C. M. Mohan, S. Santhakumar, M. Arockiaraj and J. B. Liu , Partition dimension of certain classes of series parallel graphs, Theoret. Comput. Sci. 778 (2019) 47–60, https://doi.org/10.1016/j.tcs.2019.01.026.
[13] Y. M. Chu, M. F. Nadeem, M. Azeem and M. K. Siddiqui, On sharp bounds on partition dimension of convex polytopes, IEEE Access 8 (2020) 224781–224790, https://doi.org/10.1109/ACCESS.2020.3044498.
[14] S. Pirzada and M. Aijaz, On graphs with same metric and upper dimension, Discrete Math. Algorithms Appl. 13 (2021) p. 2150015, https://doi.org/10.1142/S1793830921500154.
[15] S. Pirzada, M. Aijaz and S. P. Redmond, On upper dimension of graphs and their bases sets, Discrete Math. Lett. 3 (2020) 37–43.
[16] S. Pirzada, M. Aijaz and S. P. Redmond, Upper dimension and bases of zerodivisor graphs of commutative rings, AKCE Int. J. Graphs Comb. 17 (2020) 168–173, https://doi.org/10.1016/j.akcej.2018.12.001.
[17] P. Manuel, R. Bharati, I. Rajasingh and C. Monica, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms 6 (2008) 20–27, https://doi.org/10.1016/j.jda.2006.09.002
[18] G. R. Roshini, S. B. Chandrakala, M. Vishu Kumar and B. Sooryanarayana, Non-neighbor topological indices of honeycomb networks, Palest. J. Math. 10 (2021) 52–58.