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Abstract

Topological indices are numerical parameters for under-
standing the fundamental topology of chemical structures that
correlate with the quantitative structure-property relationship
(QSPR) / quantitative structure-activity relationship (QSAR)
of chemical compounds. The M-polynomial is a modern mathe-
matical approach to finding the degree-based topological indices
of molecular graphs. Several graph assets have been employed
to discriminate the construction of entropy measures from the
molecular graph of a chemical compound. Graph entropies
have evolved as information-theoretic tools to investigate the
structural information of a molecular graph. The possible ap-
plications of graph entropy measures in chemistry, biology and
discrete mathematics have drawn the attention of researchers.
In this research work, we compute the Nirmala index, first
and second inverse Nirmala index for silicon carbide network
Si2C3-I[p, q] with the help of its M-polynomial. Further, we
introduce the concept of Nirmala indices-based entropy measure
and enumerate them for the above-said network. Additionally,
the comparison and correlation between the Nirmala indices
and their associated entropy measures are presented through
numerical computation and graphical approaches. Following
that, curve fitting and correlation analysis are performed to
investigate the relationship between the Nirmala indices and
corresponding entropy measures.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction
Let Υ = (V (Υ ), E(Υ )) be an ordered pair of a simple, connected and undirected graph with
non-empty vertex set V (Υ ) and edge set E(Υ ). The degree dΥ (u) of a vertex u ∈ V (Υ ) is the
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total number of edges incident to u. An edge of the graph Υ is denoted by e = uv or vu, where
u and v are end vertices of that edge [1].

A constitutive branch of mathematical chemistry that confluent mathematics and chemistry
by employing the graph theory is known as chemical graph theory (CGT). In CGT, the molec-
ular structure of a chemical compound is interpreted as a graph where the atoms and bonds of
the molecular structure correspond to the vertices and edges of the graph, respectively. In this
allied area of science, molecular structures are mathematically analyzed through theoretical,
computational and graphical techniques [2].

Topological indices are mathematical parameters of a molecular graph associated with the
chemical compound that is utilized to predict the physical characteristics, chemical properties,
and biological activities of that compound. These indices play a significant role in the devel-
opment of the quantitative structure-property relationship (QSPR) / quantitative structure-
activity relationship (QSAR) analysis [3, 4]. Mathematically, a topological index is a function
from the set of all simple, connected and undirected graphs to the set of real numbers which
remain unchanged for isomorphic graphs.

As mentioned in [5], the degree-based topological index defined on edge set E(Υ ) of a graph
Υ can be denoted as:

I(Υ ) =
∑

uv∈E(Υ )

f(dΥ (u), dΥ (v)),

where f(x, y) is a non-negative and symmetric function that depends on the mathematical
formulation of the topological index. The above definition of the topological index can also be
formulated as:

I(Υ ) =
∑
i≤j

mi,j(Υ )f(i, j),

where mi,j is the total number of edges uv ∈ E(Υ ) such that dΥ (u) = i, dΥ (v) = j (i, j ≥ 1).
In the literature, several topological indices have been introduced and have proven their

usability in many areas of science and technology such as chemistry, mathematics, computer
science, biology, drug discovery, etc. Wiener index is the first theoretically most investigated
topological index. It was proposed by H. Wiener in 1947 and has significant application to
predict the boiling points of paraffin [6]. The connectivity index (or Randić index) was proposed
by Milan Randić in 1975. It is a very well-known degree-based topological index and has
widespread application in drug discovery [7]. Other well-known degree-based topological indices
that have substantiated their applicability are the Zagreb indices, harmonic index, symmetric
division (deg) index, atom-bond connectivity index, geometric-arithmetic index, inverse sum
(indeg) index and augmented Zagreb index, etc. For more details on the topological indices
and their usability, researchers may follow the articles [4, 8–11] and their references cited therein.

Several initiatives have been attempted to improve the predictive potential of these indices
by introducing a new index in the class of degree-based topological indices. Very recently, V.R.
Kulli innovated a degree-based topological index namely the Nirmala index [12] of a molecular
graph Υ , and described its mathematical formula as:

N(Υ ) =
∑

uv∈E(Υ )

√
dΥ (u) + dΥ (v). (1)

Further, the first inverse Nirmala index (denoted as IN1(Υ )) and second inverse Nirmala in-
dex (denoted as IN2(Υ )) of a molecular graph Υ are established by Kulli et al. [13] in 2021
which are defined as follows:

IN1(Υ ) =
∑

uv∈E(Υ )

√
1

dΥ (u)
+

1

dΥ (v)
=

∑
uv∈E(Υ )

[
1

dΥ (u)
+

1

dΥ (v)

] 1
2

, (2)
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IN2(Υ ) =
∑

uv∈E(Υ )

1√
1

dΥ (u) + 1
dΥ (v)

=
∑

uv∈E(Υ )

[
1

dΥ (u)
+

1

dΥ (v)

]− 1
2

. (3)

In the past, several topological indices were calculated using their standard mathematical
definition. Multiple attempts are made to investigate a compact approach that can recover
numerous topological indices of a certain class. In this connection, the idea of a general poly-
nomial was established whose derivatives or integrals, or a mix of both, at a particular point
produce the values of required topological indices. For example, the Hosoya polynomial [14]
is utilized to recover the distance-based topological indices and NM-polynomial [15] produces
the neighborhood degree sum-based indices. In 2015, Deutsch and Klažar proposed the con-
cept of the M-polynomial [16] to deal with the computation of degree-based topological indices.
In [17–22], several degree-based topological indices are calculated using the M-polynomial.

Definition 1.1 ([16]). The M-polynomial of a graph Υ defined as:

M(Υ ;x, y) =
∑

δ≤i≤j≤∆

mi,j(Υ ) xiyj ,

where δ = min {dΥ (u)|u ∈ V (Υ )}, ∆ = max {dΥ (u)|u ∈ V (Υ )} and mi,j(Υ ) is the number of
edges uv ∈ E(Υ ) such that dΥ (u) = i, dΥ (v) = j (i, j ≥ 1).

Now, we list the M-polynomial-based derivation formulas to compute the different Nirmala
indices in Table 1.

Table 1: Relation of the Nirmala indices with M-polynomial [23] of a graph Υ .

S.
No.

Topological Index f(x,y) Derivation from M(Υ ;x, y)

1. Nirmala index (N)
√
x+ y D

1/2
x J [M(Υ ;x, y)]|x=1

2. First inverse Nirmala index (IN1)
√

x+y
xy

D
1/2
x JS

1/2
y S

1/2
x [M(Υ ;x, y)]|x=1

3. Second inverse Nirmala index (IN2)
√

xy
x+y

S
1/2
x JD

1/2
y D

1/2
x [M(Υ ;x, y)]|x=1

The operators D1/2
x , D1/2

y , S1/2
x , S1/2

y , and J mentioned in Table 1 are defined as follows:

D
1/2
x (h(x, y)) =

√
x∂(h(x,y))

∂x .
√
h(x, y), D

1/2
y (h(x, y)) =

√
y ∂(h(x,y))

∂y .
√
h(x, y),

S
1/2
x (h(x, y)) =

√∫ x
0
h(t,y)
t dt.

√
h(x, y), S

1/2
y (h(x, y)) =

√∫ y
0
h(x,t)
t dt.

√
h(x, y),

J(h(x, y)) = h(x, x).

Shannon proposed the primary concept of entropy [24] in 1948 and stated that a measure of
the uncertainty of a system or a measure of the unpredictability of information content is called
the entropy of a probability distribution. Hereafter, entropy was commenced to be enforced
on chemical structures or networks and graphs to analyze their structural information. In
recent times, the applications of graph entropies have grown significantly across a wide range of
disciplines, including computer science, mathematics, biology, chemistry, sociology, and ecology.
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Graph entropy measures can be classified into different types such as intrinsic and extrinsic
measures, and they correspond to the probability distribution with graph invariants (edges,
vertices, etc.). More details on degree-based graph entropy measures and their applications can
be seen in references [25–28].

1.1 Entropy of a graph in terms of vertex degree
Let us consider the above-defined simple and connected graph Υ with order n and sizem. Then,
the graph entropy [24], introduced by Shannon, of a graph Υ is defined as follows:

ENTω(Υ ) = −
n∑
i=1

ω(si)∑n
j=1 ω(sj)

log

(
ω(si)∑n
j=1 ω(sj)

)
, (4)

where ω is a meaningful information function and si ∈ V (Υ ) for each i ∈ {1, 2, 3 . . . n}.
Now, consider ω(si) = dΥ (si) then Equation (4) reduces to

ENTω(Υ ) = −
n∑
i=1

dΥ (si)∑n
j=1 dΥ (sj)

log

(
dΥ (si)∑n
j=1 dΥ (sj)

)
,

thus

ENTω(Υ ) = log
( n∑
j=1

dΥ (sj)
)
− 1

(
∑n
j=1 dΥ (sj))

n∑
i=1

dΥ (si) log (dΥ (si)).

Since
∑n
i=1 dΥ (si) = 2m (fundamental theorem of graph theory), the above equation becomes

ENTω(Υ ) = log (2m)− 1

2m

n∑
i=1

dΥ (si) log (dΥ (si)). (5)

1.2 Entropy of a graph in terms of edge-weight
The concept of entropy [29] of an edge-weight graph is proposed by Chen et al. in 2014.
Suppose Υ be an edge-weight graph represented as Υ = (V (Υ ), E(Υ ), ω(st)), where V (Υ ) is a
set of vertices, E(Υ ) is a set of edges and ω(st) denotes the weight of an edge st ∈ E(Υ ). Then
the entropy of a graph in terms of edge-weight is defined as follows:

ENTω(Υ ) = −
∑

s′t′∈E(Υ )

ω(s′t′)∑
st∈E(Υ ) ω(st)

log

(
ω(s′t′)∑

st∈E(Υ ) ω(st)

)
. (6)

Equation (6) reduces to Equation (7) using the following steps

ENTω(Υ ) = −
∑

s′t′∈E(Υ )

ω(s′t′)∑
st∈E(Υ ) ω(st)

[
log (ω(s′t′))− log

( ∑
st∈E(Υ )

ω(st)
)]
,

thus
ENTω(Υ ) = log

( ∑
st∈E(Υ )

ω(st)
)
−

∑
s′t′∈E(Υ )

ω(s′t′)∑
st∈E(Υ ) ω(st)

log (ω(s′t′)),
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so

ENTω(Υ ) = log
( ∑
st∈E(Υ )

ω(st)
)
− 1(∑

st∈E(Υ ) ω(st)
) ∑
s′t′∈E(Υ )

ω(s′t′) log (ω(s′t′)). (7)

Now we introduce the Nirmala indices-based entropy by considering the meaningful infor-
mation function ω as a function associated with the definitions of the Nirmala indices.

• Nirmala entropy

Let ω(st) =
√
dΥ (s) + dΥ (t) then according to the definition of the Nirmala index as given in

Equation (1), we have ∑
st∈E(Υ )

ω(st) =
∑

st∈E(Υ )

√
dΥ (s) + dΥ (t) = N(Υ ).

Now, Equation (7) leads to the following mathematical expression and is called the Nirmala
entropy of a graph Υ . It is denoted as follows:

ENTN (Υ ) = log(N(Υ ))− 1

N(Υ )

∑
st∈E(Υ )

√
dΥ (s) + dΥ (t)× log

(√
dΥ (s) + dΥ (t)

)
. (8)

• First inverse Nirmala entropy

Let ω(st) =
√

1
dΥ (s) + 1

dΥ (t) then as per the expression of the First inverse Nirmala index which
is mentioned in Equation (2), we obtain

∑
st∈E(Υ )

ω(st) =
∑

st∈E(Υ )

√
1

dΥ (s)
+

1

dΥ (t)
= IN1(Υ ).

Next, Equation (7) changes to the following expression and is called the first inverse Nirmala
entropy of a graph Υ . It is defined as follows:

ENTIN1(Υ ) = log(IN1(Υ ))− 1

IN1(Υ )

∑
st∈E(Υ )

√
1

dΥ (s)
+

1

dΥ (t)
× log

(√
1

dΥ (s)
+

1

dΥ (t)

)
. (9)

• Second inverse Nirmala entropy

Let ω(st) =

√
dΥ (s)dΥ (t)√
dΥ (s)+dΥ (t)

then employing the definition of the second inverse Nirmala index as

defined in Equation (3), we get

∑
st∈E(Υ )

ω(st) =
∑

st∈E(Υ )

√
dΥ (s)dΥ (t)√
dΥ (s) + dΥ (t)

= IN2(Υ ).

Further, Equation (7) reduces to the following mathematical form and is called the second
inverse Nirmala entropy of a graph Υ . It is denoted and defined as follows:

ENTIN2(Υ ) = log(IN2(Υ ))− 1

IN2(Υ )

∑
st∈E(Υ )

√
dΥ (s)dΥ (t)√
dΥ (s) + dΥ (t)

× log

( √
dΥ (s)dΥ (t)√
dΥ (s) + dΥ (t)

)
. (10)
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1.3 Methodology and directions

In this paper, we introduce the concept of graph entropy measures by using new information
functions based on the definitions of the different Nirmala indices and perform their mathe-
matical and computational investigation for the silicon carbide network Si2C3-I[p, q]. Section 2
initiates with some basic preliminaries and a discussion of the 2D structure of the Si2C3-I[p, q]
network. Hereafter, we present the computation of the Nirmala indices using the M-polynomial
to calculate the Nirmala indices-based entropy measures of the Si2C3-I[p, q] network. Further-
more, the comparison of the Nirmala indices and their allied entropy measures is presented
through numerical data, surface plots and 3D line plots in Section 3. In Section 4, we establish
the best-fit regression models between the Nirmala indices and associated entropies using the
curve-fitting tool in MATLAB R2019a software and execute the correlation analysis among all
the molecular descriptors to observe their correlation with each other. At last, we conclude in
Section 5.

2 Computation for silicon carbide network

Silicon carbide is an industrial, synthetic, and ceramic material. It is a non-toxic and inexpensive
compound with innumerable assets. Hardness, robust crystal structure, high-temperature resis-
tance, conductivity, and chemical stability are significant properties of silicon carbide, therefore
it is used as a semiconductor in most technological devices like cutting-edge electronic gadgets,
electric vehicles, solar power inverters, sensor systems, etc. To know more about its purification,
development, and applications, see [30–32].

2.1 2D Structure of Si2C3-I[p,q]

For the silicon carbide Si2C3-I[p, q] network, the minimal energy of the Si2C3-I sheet exhibits
a planner framework consisting of polygon rings where each hexagonal ring is surrounded by
two pentagonal and four heptagonal rings. In the crystallographic structure of silicon carbide
Si2C3-I[p, q], p represents the number of associated unit cells in a single row and q represents
the number of associated rows each with p number of cells. The 2D molecular graph of silicon
carbide Si2C3-I[p, q] is given in Figure 1 where we have demonstrated how the cells are associ-
ated in a row and how one row is associated with another row. Observe that, in the graph of
Si2C3-I[p, q], the total number of vertices is 10pq and the number of edges is 15pq − 2p − 3q.
Vertex set and edge set partitions of Si2C3-I[p, q] are given in Tables 2 and 3, respectively.

Table 2: Vertex set partition of Υ = Si2C3-I[p, q] according to degrees of each vertex.

Vertex set dΥ (s) Total count
V1 1 2
V2 2 4p+ 6q − 4
V3 3 10pq − 4p− 6q + 2

2.2 Nirmala indices of Si2C3-I[p,q]

In [21], the M-polynomial of silicon carbide network Si2C3-I[p, q] was obtained and it is given
by the following theorem.
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Figure 1: (a) Unit cell of Si2C3-I[p, q], (b) Si2C3-I[4, 1], (c) Si2C3-I[4, 2], and (d) Si2C3-I[4, 3].

Table 3: Edge set partition of Υ = Si2C3-I[p, q] according to degrees of end vertices of an edge.

Edge set (dΥ (s), dΥ (t)) Total count
E1 (1, 2) 1
E2 (1, 3) 1
E3 (2, 2) p+ 2q
E4 (2, 3) 6p+ 8q − 9
E5 (3, 3) 15pq − 9p− 13q + 7

Theorem 2.1 ([21], Theorem 2.1). Let Υ be the silicon carbide Si2C3-I[p, q]. Then the M-
polynomial of Υ is

M(Υ ;x, y) =xy2 + xy3 + (p+ 2q)x2y2 + (6p+ 8q − 9)x2y3

+ (15pq − 9p− 13q + 7)x3y3.

Now we evaluate the Nirmala indices of Si2C3-I[p, q] with the help of its M-polynomial.

Theorem 2.2. Let Υ be the silicon carbide network Si2C3-I[p, q], then the Nirmala indices of
Υ are

(i) N(Υ ) = 15
√

6pq + (2 + 6
√

5− 9
√

6)p+ (4 + 8
√

5− 13
√

6)q + (2 +
√

3− 9
√

5 + 7
√

6),

(ii) IN1(Υ ) = 5
√

6pq + (1 +
√

30− 3
√

6)p+
(
2 + 8

√
5√
6
− 13

√
6

3

)
q +

(√
3√
2

+ 2√
3
− 9
√

5√
6

+ 7
√

6
3

)
,

(iii) IN2(Υ ) = 15
√

3√
2
pq +

(
1 + 6

√
6√
5
− 9
√

3√
2

)
p+

(
2 + 8

√
6√
5
− 13

√
3√

2

)
q +

(√
2√
3

+
√

3
2 −

9
√

6√
5

+ 7
√

3√
2

)
.

Proof. Let us now determine the derivation formulas (as mentioned in Table 1) over the M-
polynomial M(Υ ;x, y) at the point (x, y) to get the expressions of the Nirmala indices of Υ .
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• D1/2
x J [M(Υ ;x, y)]

= D
1/2
x J [xy2 + xy3 + (p+ 2q)x2y2 + (6p+ 8q − 9)x2y3 + (15pq − 9p− 13q + 7)x3y3]

= D
1/2
x [x3 + x4 + (p+ 2q)x4 + (6p+ 8q − 9)x5 + (15pq − 9p− 13q + 7)x6]

=
√

3x3 + 2(p+ 2q + 1)x4 +
√

5(6p+ 8q − 9)x5 +
√

6(15pq − 9p− 13q + 7)x6,

• D1/2
x JS

1/2
y S

1/2
x [M(Υ ;x, y)]

= D
1/2
x JS

1/2
y S

1/2
x [xy2 +xy3 +(p+2q)x2y2 +(6p+8q−9)x2y3 +(15pq−9p−13q+7)x3y3]

= D
1/2
x JS

1/2
y [xy2+xy3+ 1√

2
(p+2q)x2y2+ 1√

2
(6p+8q−9)x2y3+ 1√

3
(15pq−9p−13q+7)x3y3]

= D
1/2
x J [ 1√

2
xy2+ 1√

3
xy3+ 1

2 (p+2q)x2y2+ 1√
6
(6p+8q−9)x2y3+ 1

3 (15pq−9p−13q+7)x3y3]

= D
1/2
x [ 1√

2
x3 + 1√

3
x4 + 1

2 (p+ 2q)x4 + 1√
6
(6p+ 8q − 9)x5 + 1

3 (15pq − 9p− 13q + 7)x6]

=
√

3√
2
x3 + 2√

3
x4 + (p+ 2q)x4 +

√
5√
6
(6p+ 8q − 9)x5 +

√
6

3 (15pq − 9p− 13q + 7)x6,

• S1/2
x JD

1/2
y D

1/2
x [M(Υ ;x, y)]

= S
1/2
x JD

1/2
y D

1/2
x [xy2 +xy3 +(p+2q)x2y2 +(6p+8q−9)x2y3 +(15pq−9p−13q+7)x3y3]

= S
1/2
x JD

1/2
y [xy2+xy3+

√
2(p+2q)x2y2+

√
2(6p+8q−9)x2y3+

√
3(15pq−9p−13q+7)x3y3]

= S
1/2
x J [

√
2xy2+

√
3xy3+2(p+2q)x2y2+

√
6(6p+8q−9)x2y3+3(15pq−9p−13q+7)x3y3]

= S
1/2
x [
√

2x3 +
√

3x4 + 2(p+ 2q)x4 +
√

6(6p+ 8q − 9)x5 + 3(15pq − 9p− 13q + 7)x6]

=
√

2√
3
x3 +

√
3

2 x
4 + (p+ 2q)x4 +

√
6√
5
(6p+ 8q − 9)x5 + 3√

6
(15pq − 9p− 13q + 7)x6.

Therefore, the Nirmala indices of Υ is given by

(i) N(Υ ) = D
1/2
x J [M(Υ ;x, y)]|x=1

= 15
√

6pq + (2 + 6
√

5− 9
√

6)p+ (4 + 8
√

5− 13
√

6)q + (2 +
√

3− 9
√

5 + 7
√

6),

(ii) IN1(Υ ) = D
1/2
x JS

1/2
y S

1/2
x [M(Υ ;x, y)]|x=1

= 5
√

6pq + (1 +
√

30− 3
√

6)p+
(
2 + 8

√
5√
6
− 13

√
6

3

)
q +

(√
3√
2

+ 2√
3
− 9
√

5√
6

+ 7
√

6
3

)
,

(iii) IN2(Υ ) = S
1/2
x JD

1/2
y D

1/2
x [M(Υ ;x, y)]|x=1

= 15
√

3√
2
pq +

(
1 + 6

√
6√
5
− 9
√

3√
2

)
p+

(
2 + 8

√
6√
5
− 13

√
3√

2

)
q +

(√
2√
3

+
√

3
2 −

9
√

6√
5

+ 7
√

3√
2

)
.

�

2.3 Entropy measures of Si2C3-I[p,q]

Next, we calculate the various graph entropy measures of the silicon carbide network Si2C3-I[p, q].
First, we evaluate the expression for degree-based graph entropy. Later, the mathematical form
of the Nirmala indices-based entropy measures is calculated by employing the previously cal-
culated expressions of the Nirmala indices.

• Degree-based entropy of Si2C3-I[p, q]

Let us take under consideration, the molecular graph of Si2C3-I[p, q] as depicted in Figure 1
which has n = 10pq vertices and m = 15pq − 2p− 3q edges. Now, we utilize Table 2 in Equa-
tion (5) and obtain the mathematical form of the degree-based graph entropy of Si2C3-I[p, q]
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as follows:

ENTω(Υ ) = log (2m)− 1

2m

∑
s∈V (Υ )

dΥ (s) log (dΥ (s)),

ENTω(Υ ) = log (2(15pq − 2p− 3q))− 1

2(15pq − 2p− 3q)

[ ∑
s∈V1(Υ )

dΥ (s) log (dΥ (s))

+
∑

s∈V2(Υ )

dΥ (s) log (dΥ (s)) +
∑

s∈V3(Υ )

dΥ (s) log (dΥ (s))
]

= log (2(15pq − 2p− 3q))− 1

2(15pq − 2p− 3q)

[
2× 1× log (1)

+ 2× (4p+ 6q − 4)× log (2) + 3× (10pq − 4p− 6q + 2)× log (3)
]

= log (2(15pq − 2p− 3q))− (4p+ 6q − 4)× log (2)

(15pq − 2p− 3q)

− (30pq − 12p− 18q + 6)× log (3)

2(15pq − 2p− 3q)
.

• Nirmala entropy of Si2C3-I[p, q]

We know from Theorem 2.2 that the expression of the Nirmala index is given as:

N(Υ ) = 15
√

6pq + (2 + 6
√

5− 9
√

6)p+ (4 + 8
√

5− 13
√

6)q + (2 +
√

3− 9
√

5 + 7
√

6).

Now employing Table 3 in Equation (8), we obtain the Nirmala entropy in the following way:

ENTN (Υ ) = log(N(Υ ))− 1

N(Υ )

∑
st∈E(Υ )

√
dΥ (s) + dΥ (t)× log

(√
dΥ (s) + dΥ (t)

)

= log(N(Υ ))− 1

N(Υ )

[
5∑
i=1

∑
st∈Ei(Υ )

√
dΥ (s) + dΥ (t)× log

(√
dΥ (s) + dΥ (t)

)]

= log(N(Υ ))− 1

N(Υ )

[
1×
√

1 + 2× log
(√

1 + 2
)

+ 1×
√

1 + 3× log
(√

1 + 3
)

+ (p+ 2q)×
√

2 + 2× log
(√

2 + 2
)

+ (6p+ 8q − 9)×
√

2 + 3× log
(√

2 + 3
)

+ (15pq − 9p− 13q − 7)×
√

3 + 3× log
(√

3 + 3
)]

= log(N(Υ ))− 1

N(Υ )

[√
3× log

(√
3
)

+ 2× log (2) + 2× (p+ 2q)× log (2)

+
√

5× (6p+ 8q − 9)× log
(√

5
)

+
√

6× (15pq − 9p− 13q − 7)× log
(√

6
)]
.

Further, by substituting the value of N(Υ ) in the above expression, we get the desired form of
the Nirmala entropy of Si2C3-I[p, q].

• First inverse Nirmala entropy of Si2C3-I[p, q]
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The mathematical form of the first inverse Nirmala index is specified in Theorem 2.2 as

IN1(Υ ) = 5
√

6pq + (1 +
√

30− 3
√

6)p+

(
2 +

8
√
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√
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3

)
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(√
3√
2

+
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3
− 9
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5√
6

+
7
√

6

3

)
.

Now using Table 3 in Equation (9), we get the first inverse Nirmala entropy as follows:

ENTIN1(Υ ) = log(IN1(Υ ))− 1

IN1(Υ )

∑
st∈E(Υ )

√
1
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1
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.

Next, on putting the value of IN1(Υ ) in the above mathematical form, we obtain the final
expression of the first inverse Nirmala entropy of Si2C3-I[p, q].

• Second inverse Nirmala entropy of Si2C3-I[p, q]

The value of the second inverse Nirmala index of Si2C3-I[p, q] calculated in Theorem 2.2 is
stated below as:

IN2(Υ ) =
15
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3√
2
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6
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.
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Next utilizing Table 3 in Equation (10), we have the second inverse Nirmala entropy as follows:

ENTIN2
(Υ ) = log(IN2(Υ ))− 1

IN2(Υ )

∑
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.

Now, make use of IN2(Υ ) in the above expression, and we get the desired expression of the
second inverse Nirmala entropy of Si2C3-I[p, q].

3 Comparison through numerical and graphical demon-
strations

Graph entropy measures have several applications in numerous scientific areas including com-
puter science, information theory, chemistry, biological drugs, and pharmaceuticals. Therefore
the numerical computation and graphical demonstration of these molecular descriptors are
subsidiaries of the scientists working in these areas. In this section, we present the comparison
of the Nirmala indices and corresponding entropy measures through numerical computation,
surface depiction, and 3D line plots. Numerical computation of the Nirmala indices and their
allied entropy measures of Si2C3-I[p, q] are tabulated in Table 4 for 1 ≤ p, q ≤ 50 with condition
p = q. Further, the surface plots of the molecular descriptors under investigation are presented
in Figures 2 and 3 for 1 ≤ p, q ≤ 100. Also, the comparison between the Nirmala indices and
concerned entropy measures is exhibited in Figure 4 through the surface and 3D line plots for
1 ≤ p, q ≤ 100. Table 4 and Figures 2 to 4 induce us to make the following remarks.
Remark 1. From Table 4 and Figures 2 and 3, we may observe that the Nirmala indices and
associated entropy measures of silicon carbide network Si2C3-I[p, q] increase as the values of p
and q increase.
Remark 2. For silicon carbide network Υ = Si2C3-I[p, q], from Table 4 and Figure 4, we
have the following inequality relationships IN1(Υ ) < IN2(Υ ) < N(Υ ) and ENTIN1

(Υ ) ≈
ENTIN2

(Υ ) ≈ ENTN (Υ ).
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Table 4: Calculated values of the Nirmala indices and their associated entropy measures of
Si2C3-I[p, q] where 1 ≤ p, q ≤ 50 with p = q.

[p, q] N IN1 IN2 ENTN ENTIN1 ENTIN2
[1, 1] 20.91239 9.94380 10.15975 2.29946 2.29712 2.29784
[2, 2] 114.55561 44.50341 56.66511 3.90901 3.90733 3.90801
[3, 3] 281.68351 103.55793 139.91282 4.78531 4.78413 4.78467
[4, 4] 522.29611 187.10733 259.90288 5.39194 5.39103 5.39147
[5, 5] 836.39341 295.15164 416.63528 5.85656 5.85583 5.85619
[6, 6] 1223.97539 427.69085 610.11003 6.23325 6.23264 6.23295
[7, 7] 1685.04207 584.72495 840.32712 6.55008 6.54956 6.54982
[8, 8] 2219.59344 766.25395 1107.28656 6.82349 6.82303 6.82327
[9, 9] 2827.62950 972.27784 1410.98835 7.06398 7.06356 7.06377

[10, 10] 3509.15025 1202.79664 1751.43248 7.27861 7.27824 7.27843
[11, 11] 4264.15570 1457.81033 2128.61896 7.47242 7.47209 7.47226
[12, 12] 5092.64584 1737.31892 2542.54779 7.64910 7.64879 7.64895
[13, 13] 5994.62067 2041.32240 2993.21896 7.81143 7.81114 7.81129
[14, 14] 6970.08019 2369.82079 3480.63247 7.96156 7.96129 7.96143
[15, 15] 8019.02441 2722.81407 4004.78834 8.10120 8.10095 8.10108
[16, 16] 9141.45332 3100.30225 4565.68655 8.23173 8.23149 8.23162
[17, 17] 10337.36692 3502.28532 5163.32710 8.35425 8.35403 8.35415
[18, 18] 11606.76521 3928.76329 5797.71000 8.46970 8.46949 8.46961
[19, 19] 12949.64819 4379.73616 6468.83525 8.57885 8.57866 8.57876
[20, 20] 14366.01587 4855.20393 7176.70285 8.68235 8.68216 8.68226
[21, 21] 15855.86824 5355.16659 7921.31279 8.78075 8.78057 8.78067
[22, 22] 17419.2053 5879.62416 8702.66507 8.87454 8.87437 8.87446
[23, 23] 19056.02706 6428.57662 9520.75971 8.96413 8.96396 8.96405
[24, 24] 20766.3335 7002.02398 10375.59669 9.04987 9.04972 9.04979
[25, 25] 22550.12464 7599.96623 11267.17601 9.13209 9.13194 9.13202
[26, 26] 24407.40047 8222.40339 12195.49768 9.21106 9.21092 9.21099
[27, 27] 26338.16099 8869.33544 13160.5617 9.28703 9.28689 9.28697
[28, 28] 28342.40621 9540.76238 14162.36806 9.36023 9.36009 9.36016
[29, 29] 30420.13612 10236.68423 15200.91677 9.43083 9.43070 9.43077
[30, 30] 32571.35072 10957.10097 16276.20783 9.49903 9.49891 9.49897
[31, 31] 34796.05001 11702.01261 17388.24123 9.56498 9.56486 9.56492
[32, 32] 37094.23399 12471.41915 18537.01698 9.62882 9.62871 9.62877
[33, 33] 39465.90267 13265.32058 19722.53507 9.69069 9.69058 9.69064
[34, 34] 41911.05604 14083.71692 20944.79551 9.75071 9.75059 9.75065
[35, 35] 44429.6941 14926.60815 22203.7983 9.80897 9.80886 9.80892
[36, 36] 47021.81685 15793.99427 23499.54343 9.86558 9.86548 9.86554
[37, 37] 49687.4243 16685.8753 24832.03091 9.92064 9.92054 9.92059
[38, 38] 52426.51643 17602.25122 26201.26073 9.97422 9.97412 9.97418
[39, 39] 55239.09327 18543.12204 27607.2329 10.0264 10.02631 10.02636
[40, 40] 58125.15479 19508.48775 29049.94742 10.07726 10.07717 10.07722
[41, 41] 61084.701 20498.34837 30529.40428 10.12685 10.12676 10.12681
[42, 42] 64117.73191 21512.70388 32045.60349 10.17525 10.17516 10.17521
[43, 43] 67224.24751 22551.55429 33598.54505 10.22250 10.22241 10.22246
[44, 44] 70404.2478 23614.8996 35188.22895 10.26866 10.26858 10.26862
[45, 45] 73657.73278 24702.7398 36814.6552 10.31378 10.31369 10.31374
[46, 46] 76984.70246 25815.0749 38477.82379 10.35790 10.35782 10.35786
[47, 47] 80385.15683 26951.9049 40177.73473 10.40107 10.40099 10.40104
[48, 48] 83859.09589 28113.22979 41914.38802 10.44333 10.44325 10.44329
[49, 49] 87406.51964 29299.04959 43687.78365 10.48472 10.48464 10.48468
[50, 50] 91027.42809 30509.36428 45497.92163 10.52526 10.52519 10.52523
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(a) N(Υ ) (b) IN1(Υ ) (c) IN2(Υ )

Figure 2: Graphical depiction of the Nirmala indices of Υ = Si2C3-I[p, q] for 1 ≤ p, q ≤ 100.

(a) ENTN(Υ ) (b) ENTIN1(Υ ) (c) ENTIN2(Υ )

Figure 3: Surface plots of the Nirmala indices-based entropy measures of Υ = Si2C3-I[p, q] for
1 ≤ p, q ≤ 100.

4 Curve fitting and correlation between indices and en-
tropy measures

Curve fitting is one of the most effective and widely used data analysis methods. It is utilized to
analyze the relationship between one or more independent variables and a dependent variable
with the objective to develop the best-fit relationship model. Polynomial, linear, rational, and
power are various methods of curve fitting. Here, we execute the curve fitting analysis to
inspect the relationship between the Nirmala indices and entropy measures of Si2C3-I[p, q] for
1 ≤ p, q ≤ 100 with p = q. The power-2 regression model is employed to perform this data
analysis.

(a) General model power-2:
ENTN = α1 ·Nβ1 + γ1,

where coefficients (with 95% confidence bounds (CB)) are α1 = 241.8 with CB (217.3, 266.4),
β1 = 0.003959 with CB (0.003571, 0.004347) and γ1 = −242.5 with CB (−267.1,−217.9).

(b) General model power-2:
ENTIN1

= α2 · IN1
β2 + γ2,
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(a) Surface plot (b) 3D line plot

(c) Surface plot (d) 3D line plot

Figure 4: Comparison of the Nirmala indices and their associated entropy measures of
Si2C3-I[p, q] through surface plot and 3D line plot for 1 ≤ p, q ≤ 100.

where coefficients (with 95% confidence bounds (CB)) are α2 = −194.6 with CB (−212.1,−177),
β2 = −0.005426 with CB (−0.005939,−0.004913) and γ2 = 194.5 with CB (176.9, 212.1).

(c) General model power-2:
ENTIN2

= α3 · IN2
β3 + γ3,

where coefficients (with 95% confidence bounds (CB)) are α3 = 205.8 with CB
(184.5, 227), β3 = 0.004634 with CB (0.004173, 0.005095) and γ3 = −205.7 with CB
(−227,−184.4).

The statistical measures that are involved in the analysis, are the squared of correlation coef-
ficient (R2), the sum of square error (SSE), and root mean squared error (RMSE). The model
performs efficiently if the value of RMSE is low (closer to 0) and simultaneously, the higher
value of R2 (closer to 1) signifies that the regression line better fits the data. In this context, our
primary focus is to obtain a lower RMSE value. The curve fitting tool available in MATLAB is
used to establish the regression models. The obtained statistics of fits are cataloged in Table 5
and performed models are shown in Figure 5.

Correlation analysis is a very efficient and successful data analysis tool in statistics that is
used to establish the correlation between two or more data sets. Here, the correlation analysis
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Table 5: Statistics of curve fitting of the Nirmala indices vs. Nirmala entropy measures of
Si2C3-I[p, q].

Topological indices Data Fit-type R2 SSE RMSE
N N vs. ENTN Power-2 1 0.002599 0.005176
IN1 IN1 vs. ENTIN1

Power-2 1 0.004260 0.006627
IN2 IN2 vs. ENTIN2

Power-2 1 0.003687 0.006165

(a) (b)

(c)

Figure 5: Curve fitting plots for the Nirmala indices vs. associated entropy measures of
Si2C3-I[p, q] for 1 ≤ p, q ≤ 100 with p = q.

is performed to test the correlation among the Nirmala indices and allied entropy measures of
Si2C3-I[p, q] for 1 ≤ p, q ≤ 100 with p = q. The tested value of the measure of relationship
(correlation coefficient (R)) is listed in Table 6. Since the calculated values of the Nirmala indices

Table 6: Correlation among the Nirmala indices and associated entropy measures of the
Si2C3-I[p, q] network for 1 ≤ p, q ≤ 100 with p = q.

N IN1 IN2 ENTN ENTIN1 ENTIN2

N 1 0.9999 0.9999 0.7718 0.7718 0.7718
IN1 0.9999 1 0.9999 0.7722 0.7721 0.7722
IN2 0.9999 0.9999 1 0.7718 0.7717 0.7718

ENTN 0.7718 0.7722 0.7718 1 0.9999 0.9999
ENTIN1 0.7718 0.7721 0.7717 0.9999 1 0.9999
ENTIN2 0.7718 0.7722 0.7718 0.9999 0.9999 1

reported in Table 4 are different from each other the correlation coefficient between them is
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R = 0.9999 which implies that they are highly correlated with each other. This concludes that
these indices will predict the same structural features and properties of Si2C3-I[p, q]. Also,
the Nirmala indices-based entropy measures are strongly correlated with each other with the
R-value 0.9999. Therefore, a similar conclusion can be made for the Nirmala indices-based
entropy measures. The above discussion suggests that the researchers may proceed with one
of the Nirmala indices and one of the associated entropy measures in future research for the
Si2C3-I[p, q] network.

5 Conclusion
In this current study, we introduced three novel graph entropy measures by using new infor-
mation functions based on the definitions of the Nirmala indices and named them Nirmala
indices-based entropy measures. Here, the mathematical expressions of the Nirmala indices of
the silicon carbide network Si2C3-I[p, q] have been evaluated with the help of its M-polynomial
to calculate the Nirmala indices-based entropy measures of this compound. Further, the numer-
ical computation and surface depiction of the Nirmala indices and associated entropy measures
have been exhibited, and we performed their comparison through the surface and 3D line plots.
Figures 2 to 4 and Table 4 recommended that the values of the Nirmala indices and associ-
ated entropy measures of silicon carbide network Si2C3-I[p, q] increase as the values of p and q
increase and have the following relationships:

IN1(Υ ) < IN2(Υ ) < N(Υ ) and ENTIN1
(Υ ) ≈ ENTIN2

(Υ ) ≈ ENTN (Υ ).

Additionally, the best-fit regression models between the Nirmala indices and allied entropies
have been established using the curve-fitting tool in MATLAB R2019a software. Following that,
the correlation analysis between the employed molecular descriptors has been performed to test
their correlation with each other. The outcomes obtained in Table 6 evinced us that among six
molecular descriptors, the researchers might consider one Nirmala index and one associated en-
tropy measure in the future experimentation of this compound. The results obtained from this
study would be helpful in the fields of electronic, mechanical, optical, and nanoelectronic tech-
nology to investigate the structural characteristics and topology of the silicon carbide network
Si2C3-I[p, q].
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