Deficiency Sum Energy of Some Graph Classes

Document Type : Research Paper

Authors

Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India

Abstract

In this paper‎, ‎we introduce the concept of deficiency sum matrix $S_{df}(G)$ of a simple graph $G=(V,E)$ of order $n$‎. ‎The deficiency $df(v)$ of a vertex $v \in V$ is the deviation between the degree of the vertex $v$‎
‎ and the maximum degree of the graph‎. ‎The deficiency sum matrix $S_{df}(G)$ is a matrix of order $n$ whose $(i,j)$-th entry is $df(v_{i})+df(v_{j})$‎, ‎if the vertices $v_{i}$ and $v_{j}$ are adjacent and $0$‎, ‎otherwise‎. ‎In addition‎, ‎we introduce deficiency sum energy $ES_{df}(G)$ of a graph $G$ and establish some bounds for $ES_{df}(G)$‎. ‎Further‎, ‎deficiency sum energy of some classes of graphs are obtained‎. ‎Moreover‎, ‎we construct an algorithm and python(3.8) code to find out spectrum and deficiency sum energy of graph $G$‎.

Keywords

Main Subjects


[1] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Boston, 1969.
[2] I. Gutman, The energy of a graph, Ber. Math.— Statist. Sekt. Forschungsz. Graz. 103 (1978) 1–23.
[3] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295,
https://doi.org/10.1016/j.laa.2004.02.038.
[4] I. Gutman and B. Furtula, Survey of graph energies, Math. Interdisc. Res. 2 (2) (2017) 85–129, https://doi.org/10.22052/MIR.2017.81507.1057.
[5] I. Gutman and B. Furtula, The total π-electron energy saga, Croat. Chem. Acta 90 (3) (2017) 359–368, https://doi.org/10.5562/cca3189.
[6] B. Zhou and N. Trinajstic, On sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov. 57 (2010) 513–517.
[7] C. Adiga and M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci. 4 (8) (2009) 385–396.
[8] C. Adiga and C. S. S. Swamy, Bounds on the largest of minimum degree eigenvalues of graphs, Int. Math. Forum 5 (37) (2010) 1823–1831.
[9] S. Alikhani and N. Ghanbari, Randić energy of specific graphs, Appl. Math. Comput. 269 (2015) 722–730, https://doi.org/10.1016/j.amc.2015.07.112.
[10] K. C. Das, S. Sorgun and K. Xu, On randic energy of graphs, MATCH Commun. Math.Comput. Chem. 72 (1) (2014) 227–238.
[11] I. Gutman, V. Mathad, S. I. Khalaf and S. S. Mahde, Average degreeeccentricity energy of graphs, Math. Interdisc. Res. 3 (1) (2018) 45–54, https://doi.org/10.22052/MIR.2018.119231.1090.
[12] N. Jafari Rad, A. Jahanbani and I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 79 (2018) 371–386.
[13] A. M. Naji and N. D. Soner, The maximum eccentricity energy of a graph, Int. J. Sci. Engin. Research 7 (2016) 5–13.
[14] B. Sharada, M. I. Sowaity and I. Gutman, Laplacian sum-eccentricity energy of a graph, Math. Interdisc. Res. 2 (2) (2017) 209–219, https://doi.org/10.22052/MIR.2017.106176.1084.
[15] J. Wang, L. Lu, M. Randić and G. Li, Graph energy based on the eccentricity matrix, Discrete Math. 342 (9) (2019) 2636–2646, https://doi.org/10.1016/j.disc.2019.05.033.
[16] B. Zhou, I. Gutman and T. Aleksić , A note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 441–446.
[17] D. S. Revankar, M. M. Patil and H. S. Ramane, On eccentricity sum eigenvalue and eccentricity sum energy of a graph, Ann. Pure Appl. Math. 13 (2017) 125–130, https://doi.org/10.22457/apam.v13n1a12.
[18] M. I. Sowaity and B. Sharada, The sum-eccentricity energy of a graph, Int. J. Recent Innov. Trends Comput. Commun. 5 (6) (2017) 293–304, https://doi.org/10.17762/ijritcc.v5i6.766.
[19] O. Singh, P. Garg and N. Kansal, Some properties of maximum deficiency energy of a graph, Comput. Sci. J. Mold. 85 (1) (2021) 76–95.
[20] M. Biernacki, Sur une inégalité entre des intégrales définies, Ann. Univ. Mariae CurieSklodowska 4 (1950) 1–4.
[21] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Series. Integral Calculus. Theory of Functions, Springer Berlin, Heidelberg, 1997.
[22] J. B. Diaz and F. T. Metcalf, Stronger forms of a class of inequalities of G.Polya-G.Szego and L.V. Kantorovich, Bull. Amer. Math. Soc. 69 (3) (1963) 415–418.