[1] A. W. Bosman, H. M. Janssen and E. W. Meijer, About dendrimers: structure, physical properties, and applications, Chem. Rev. 99 (7) (1999) 1665–1688, https://doi.org/10.1021/cr970069y.
[2] P. Manuel and I. Rajasingh, Topological properties of silicate networks, 5th IEEE GCC Conference and Exhibition (2009) 1–17, https://doi.org/10.1109/IEEEGCC.2009.5734286.
[3] J. Kunstmann and A. Quandt, Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties, Phys. Rev. B. 74 (3) (2006) p. 035413, https://doi.org/10.1103/PhysRevB.74.035413.
[4] P. Manuel, Computational aspects of carbon and boron nanotubes, Molecules. 15 (12) (2010) 8709–8722, https://doi.org/10.3390/molecules15128709.
[5] R. K. F. Lee, B. J. Cox and J. M. Hill, Ideal polyhedral model for boron nanotubes with distinct bond lengths, J. Phys. Chem. C. 113 (46) (2009) 19794–19805, https://doi.org/10.1021/jp904985r.
[6] H. Tang and S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets, Phys. Rev. Lett. 99 (11) (2007) p. 115501, https://doi.org/10.1103/PhysRevLett.99.115501.
[7] X. Yang, Y. Ding and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability and electronic properties, Phys. Rev. B. 77 (4) (2008) p. 041402, https://doi.org/10.1103/PhysRevB.77.041402.
[8] V. Bezugly, J. Kunstmann, B. Grundkötter-Stock, T. Frauenheim, T. Niehaus, and G. Cuniberti, Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities, ACS Nano. 5 (6) (2011) 4997–5005,
https://doi.org/10.1021/nn201099a.
[9] P. John, H. Sachs and H. Zerntiz, Counting perfect matchings in polyominoes with an application to the dimer problem, Appl. Math. 19 (1987) 465–477.
[10] P. W. Kasteleyn, The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice, Physica. 27 (12) (1961) 1209–1225.
[11] S. W. Golomb, Checker boards and polyominoes, Am. Math. Mon. 61 (10) (1954) 675–682,
https://doi.org/10.1080/00029890.1954.11988548.
[12] G. Barequet, S. W. Golomb and D. A. Klarner, Polyominoes, in: J. E. Goodman, J. O’Rourke and C. D. Tóth (Eds.), Handbook of discrete and computational geometry, CRC Press LLC, Boca Raton, 1997.
[13] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390–408,
https://doi.org/10.1007/BF02764716.
[14] J. Fiamcik, The acyclic chromatic class of a graph, Math. Slovaca. 28 (1978) 139–145.
[15] N. Alon and A. Zaks, Algorithmic aspects of acyclic edge colorings, Algorithmica. 32 (2002)
611–614, https://doi.org/10.1007/s00453-001-0093-8.
[16] H. Alt, U. Fuchs and K. Kriegel, On the number of simple cycles in planar graphs, Comb. Probab. Comput. 8(5) (1999) 397–405.
[17] A. V. Kostochka, Upper bounds on the chromatic functions of graphs, Ph.D. Thesis, Novosibirsk, Russian, 1978.
[18] A. H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen, New acyclic and star coloring algorithms with application to computing hessians, SIAM J. Sci. Comput. 29 (3) (2007) 1042–1072,
https://doi.org/10.1137/050639879.
[19] D. Amar, A. Raspaud and O. Togni, All-to-all wavelength-routing in all-optical compound networks, Discrete Math. 235 (2001) 353–363,
https://doi.org/10.1016/S0012-365X(00)00289-2.
[20] I. Moffatt, Unsigned state models for the jones polynomial, Ann. Comb. 15 (2011) 127–146,
https://doi.org/10.1007/s00026-011-0087-4.
[21] J. E. Graver and E. J. Hartung, Kekuléan benzenoids, J. Math. Chem. 52 (2014) 977–989,
https://doi.org/10.1007/s10910-013-0304-y.
[22] A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inf. Comput. Sci. 25 (3) (1985) 334–343, https://doi.org/10.1021/ci00047a033.
[23] A. B. Greeni and V. V. Navis, Acyclic coloring of certain graphs, J. Adv. Comput. Intell. Intell. Inform. 27 (1) (2023) 101–104.
[24] J.Wang and L. Miao, Acyclic coloring of graphs with maximum degree at most six, Discrete Math. 342 (2019) 3025–3033, https://doi.org/10.1016/j.disc.2019.06.012.
[25] T. Wang and Y. Zhang, Acyclic edge coloring of graphs, Discret. Appl. Math. 167 (2014) 290–303, https://doi.org/10.1016/j.dam.2013.12.001.
[26] I. Rajasingh, R. Rajan and D. Paul, A new approach to compute acyclic chromatic index of certain chemical structures, Iranian J. Math. Chem. 6 (1) (2015) 51–61, https://doi.org/10.22052/IJMC.2015.9056.
[27] F. Simonraj and A. George, Topological properties of few poly oxide, poly silicate, DOX and DSL networks, Int. J. Future Comput. Commun. 2 (2) (2013) 90–95, https://doi.org/10.7763/IJFCC.2013.V2.128.