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Abstract

For an edge e = uv of a graph G, mu(e|G) denotes the num-
ber of edges closer to the vertex u than to v (similarly mv(e|G)).
The edge Mostar index Moe(G), of a graph G is defined as the
sum of absolute differences between mu(e|G) and mv(e|G) over
all edges e = uv of G. H. Liu et al. proposed a conjecture on
extremal bicyclic graphs with respect to the edge Mostar index
[1]. Even though the conjecture was true in case of the lower
bound and proved in [2], it was wrong for the upper bound. In
this paper, we disprove the conjecture proposed by H. Liu et al.
[1], propose its correct version and prove it. We also give an
alternate proof for the lower bound of the edge Mostar index for
bicyclic graphs with a given number of vertices.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction

Topological indices are numerical quantities which are used to describe specific properties of
graphs based on their structure. They are referred to as structural invariants, being structural
parameters. The Wiener index [3], defined in 1947 by H. Wiener as a linear approximation of
boiling points for paraffin molecules, is the first among these kinds of indices. A multitude of
topological indices has been defined and extensively studied in chemical graph theory since its
inception. In 2018, Tomislav Došlić et al. proposed Mostar index [4] as a measure to study the
degree peripherality of edges and graphs [5]. Let nu(e|G) denote the number of vertices closer
to u than to v (similarly for nv(e|G)). Then, the Mostar index Mo(G) of the graph G = (V,E)
is defined as

Mo(G) =
∑

e=uv∈E
|nu(e|G)− nv(e|G)|.
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For a detailed literature on Mostar index, see [4–11]. Various modified versions of the Mostar
index have been proposed and studied [5] during these years. One among them is the edge
Mostar index. The edge Mostar index Moe(G) [12] of the graph G = (V,E) is defined as

Moe(G) =
∑

e=uv∈E
|mu(e|G)−mv(e|G)|,

wheremu(e|G) is the analogous edge version of nu(e|G). Since the outset ofMoe(G), few studies
have been done on it. Arockiaraj et al. [12] determined the edge Mostar index for a family
of coronoid and carbon nanocone structures. H. Liu et al. [1] determined the bounds of Moe
for trees, unicyclic graphs, and cacti of a given order. In [13], M. Imran et al. determined the
edge Mostar index of some chemical structures using graph operations. In [14], Nima Ghanbari
et al. computed the edge Mostar index of some class of polymer graphs. Yasmeen et al. [15]
computed the upper bound of the edge Mostar index for cacti with a fixed number of cycles.
In [2], Ghalavand et al. determined the upper bound of the edge Mostar index for trees with a
given diameter and the lower bound of the edge Mostar index for trees with some parameters.

Throughout this paper, we consider only simple, finite, undirected, connected graphs. A
graph is bicyclic if it has exactly two induced cycles. A vertex v of a graph G is said to be a
pendant vertex if its degree d(v) = 1 and the edge e incident on v is a pendant edge. In [1], H.
Liu et al. proposed the following conjecture on the extremal bicyclic graphs with respect to the
edge Mostar index.

Conjecture 1.1. [1] If the size m of bicyclic graph is large enough, then Θm−4,2,2 has the
minimum edge Mostar index.

Conjecture 1.2. [1] If the size m of bicyclic graph is large enough, then the bicyclic graphs
G1 and G2 (see Figure 1) have the maximum edge Mostar index.

Figure 1: G1 and G2 of Conjecture 1.2.

Although Conjecture 1.1 was proved in [2], Conjecture 1.2 is not proved yet. Conjecture 1.2
proposed the existence of two graphs G1 and G2 attaining the upper bound of the edge Mostar
index for bicyclic graphs, but we found that Moe(G1) −Moe(G2) = 4 > 0 for n ≥ 9 (or size
m ≥ 10). In this paper, we propose and prove the correct version of the conjecture. We also
give an alternate proof for Conjecture 1.1 in Section 4. For convenience, we state all the results
in terms of the order of the graph.
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2 Notations

For each edge e = uv ∈ E, let µ(e|G) = |mu(e|G) −mv(e|G)| denote the contribution by the
edge e to the edge Mostar index.

Table 1: Notations and symbols.

Bn The collection of all bicyclic graphs of order n.
Θa,b,c The collection of all bicyclic graphs in which two vertices v1 and v2 are con-

nected by three different paths of lengths a, b, c with a ≥ b ≥ c.
Θn The collection of all bicyclic graphs in Θa,b,c with order n.
Φa,b The collection of all bicyclic graphs consisting of two cycles of lengths a and b

without any common edges.
φa,b,c The bicyclic graph consisting of two cycles of lengths a and b together with c

pendant edges attached at a common vertex u.
φa,b[T1, T2, . . . , Tm] The collection of all bicyclic graphs consisting of two distinct cycles Ca and Cb

without any common edges along with tree Ti attached to some vertex ui of
Ca or Cb for i = 1, 2, . . . ,m.

φa,b[S1, S2, . . . , Sr] The collection of all bicyclic graphs consisting of two distinct cycles Ca and Cb

without any common edges in which the central vertex vi, (d(vi) > 1) of the
star graph Si is identified with the vertex ui of Ca or Cb for i = 1, 2, . . . , r.

3 Upper bound

In this section, we determine the upper bound of edge Mostar index of bicyclic graphs of order
n.

Lemma 3.1. [1] Let G be a graph with a cut edge e = uv different from a pendant edge and
G′ is the graph obtained by contracting the edge e and adding a pendant edge e′ = wz at the
contracting vertex w. Then

Moe(G) < Moe(G
′).

Lemma 3.2. Let G ∈ Φa,b be a bicyclic graph with n vertices, thenMoe(G) ≤Moe(φa,b,n+1−(a+b)).

Proof. Let G = φa,b[T1, T2, . . . , Tr], using Lemma 3.1, we can say that

Moe(φa,b[T1, . . . , Tr]) ≤Moe(G
′),

where G′ = φa,b[S1, S2, . . . , Sr] with u be the vertex common to both Ca and Cb, r = a+ b− 1.
Now we will prove that Moe(G

′) ≤ Moe(G1), where G1 = φa,b,n+1−(a+b). For each edge e, let
me

0 denote the number of edges that are at an equal distance from the end vertices u and v other
than the edge e and me denotes the diminishing factor in the contribution µ(e|G′) without me

0.
Case I : a, b are even: For every edge e ∈ Ca, we have µ(e|G′) = (n + 1 −me −me

0) where
me +me

0 ≥ a, since every edge of Ca does not contribute to µ(e|G′). For the corresponding edge
in G1, µ(e|G1) = (n+1−a). Similarly for every edge e ∈ Cb, we have µ(e|G′) = (n+1−me−me

0)
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whereme+me
0 ≥ b and µ(e|G1) = (n+1−b). For every pendant edge e, µ(e|G′) = n = µ(e|G1).

Moe(G
′)−Moe(G1) =

∑
e∈Ca

((n+ 1−me −me
0)− (n+ 1− a))

+
∑
e∈Cb

((n+ 1−me −me
0)− (n+ 1− b))

=
∑
e∈Ca

(a−me −me
0) +

∑
e∈Cb

(b−me −me
0) ≤ 0.

Case II : a, b are odd: For every edge e ∈ Ca, we have µ(e|G′) = (n + 1 −me −me
0) where

me ≥ a andme
0 ≥ 0. For the corresponding edge in G1, µ(e|G1) = (n+1−a), except for one edge

whose contribution µ(e|G1) = 0. Similarly, for every edge f ∈ Cb, µ(f |G′) = (n+ 1−mf −mf
0 )

where mf ≥ b and µ(f |G1) = (n+ 1− b), except for one edge whose contribution µ(f |G1) = 0.
For every pendant edge e, µ(e|G′) = n = µ(e|G1).

Moe(G
′)−Moe(G1) =

∑
e∈Ca

(n+ 1−me −me
0)−

a−1∑
i=1

(n+ 1− a)

+
∑
e∈Cb

(n+ 1−me −me
0)−

b−1∑
i=1

(n+ 1− b)

=

a−1∑
i=1

(a−me)−
a∑

i=1

me
0 + n+ 1−me

+

b−1∑
i=1

(b−me)−
b∑

i=1

me
0 + n+ 1−me

=

a∑
i=1

(a−me) +

b∑
i=1

(b−me) ≤ 0.

Since
∑a

i=1m
e
0 = n+ 1− a and

∑b
i=1m

f
0 = n+ 1− b.

Case III : a odd and b even: For every edge e ∈ Ca, we have µ(e|G′) = (n+ 1−me −me
0),

me ≥ a. For the corresponding edge in G1, µ(e|G1) = (n + 1 − a) except for one edge whose
contribution µ(e|G1) = 0. Similarly, for every edge f ∈ Cb we have µ(f |G′) = (n+1−mf−mf

0 )

wheremf +mf
0 ≥ b. For the corresponding edge in G1, µ(f |G1) = (n+1−b). For every pendant

edge e, µ(e|G′) = n = µ(e|G1).

Moe(G
′)−Moe(G1) =

∑
e∈Ca

(n+ 1−me −me
0)−

a−1∑
i=1

(n+ 1− a)

+
∑
e∈Cb

(
(n+ 1−me −mf

0 )− (n+ 1− b)
)

=

a−1∑
i=1

(a−me)−
a∑

i=1

me
0 + n+ 1−me +

b∑
i=1

(
b−me −mf

0

)
=

a∑
i=1

(a−me) +
∑
e∈Cb

(
b−me −mf

0

)
≤ 0.
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Since
∑a

i=1m
e
0 = n+ 1− a. �

Lemma 3.3. Let a, b ≥ 4 then,

(a.) Moe(φa,b,n+1−(a+b)) ≤Moe(φa−2,b−2,n+5−(a+b)),

(b.) Moe(φa,b,n+1−(a+b)) ≤Moe(φa−2,b,n+3−(a+b)),

(c.) Moe(φa,b,n+1−(a+b)) ≤Moe(φa,b−2,n+3−(a+b)).

Proof. (a.) Let G1 = φa,b,n+1−(a+b), G2 = φa−2,b−2,n+5−(a+b) and u be the vertex common to
both Ca and Cb. When a and b are even, for a−2 edges e ∈ Ca, we have µ(e|G1) = n+1−
a ≤ µ(e|G2) = n+1−a+2 and for the remaining two edges e′ ∈ Ca, µ(e′|G1) = n+1−a ≤
µ(e′|G2) = n. Similarly, for b−2 edges e ∈ Cb, µ(e|G1) = n+1−b ≤ µ(e|G2) = n+1−b+2
and for the remaining two edges e′ ∈ Cb, µ(e′|G1) = n+ 1− b ≤ µ(e′|G2) = n. When a, b
are odd, except for two edges, the contribution of edges is same as in the previous case.
For two edges the contribution in both graphs is zero. When only a or b is odd, except
for one edge whose contribution is zero, all the other edges have the same contribution as
in the previous case. For each pendant edge, µ(e|G1) = µ(e|G2). Thus for each edge e,
µ(e|G1) ≤ µ(e|G2) hence Moe(φa,b,n+1−(a+b)) ≤Moe(φa−2,b−2,n+5−(a+b)).

(b.) Let G1 = φa,b,n+1−(a+b) and G2 = φa−2,b,n+3−(a+b). When a and b are even, for a − 2
edges e ∈ Ca, we have µ(e|G1) = n+1−a ≤ µ(e|G2) = n+1−a+2 and for the remaining
two edges e′ ∈ Ca, µ(e′|G1) = n+1−a ≤ µ(e′|G2) = n. For every other edges, µ(e|G1) =
µ(e|G2). When a, b are odd, except for two edges, the contribution of edges is same as in
the previous case. For two edges the contribution in both graphs is zero. When only a or
b is odd, except for one edge whose contribution is zero all the other edges have the same
contribution as in the previous case. For each pendant edge, µ(e|G1) = µ(e|G2). Thus
for each edge e, µ(e|G1) ≤ µ(e|G2) hence Moe(φa,b,n+1−(a+b)) ≤Moe(φa−2,b,n+3−(a+b)).

(c.) Proof is similar to Case (b).
�

Theorem 3.4. Let G ∈ Φa,b be a bicyclic graph with order n ≥ 9. Then Moe(G) ≤ n2 +n−24
and the equality holds if and only if G ∼= φ4,4,n−7.

Proof. LetG be a bicyclic graph in Φa,b with maximum edge Mostar index. Then by Lemma 3.1,
all the bridges of G are pendant edges and by Lemma 3.2, all the pendant edges of G should
be at the common vertex. By Lemma 3.3, G can not have cycles of length more than 4.
Thus G should be one among φ3,3,n−5, φ3,4,n−6 or φ4,4,n−7. In φ3,3,n−5, for n − 5 pendant
edges, µ(e|φ3,3,n−5) = n, for two edges µ(e|φ3,3,n−5) = 0 and for the rest of the four edges
µ(e|φ3,3,n−5) = n−2. ThusMoe(φ3,3,n−5) = n2−n−8. Similarly,Moe(φ3,4,n−6) = n2−16 and
Moe(φ4,4,n−7) = n2+n−24. Then clearlyMoe(φ3,4,n−6) > Moe(φ3,3,n−5) andMoe(φ4,4,n−7) >
Moe(φ3,4,n−6) for n > 8. �

Let G be a graph with size m. Then for any edge e = xy of G, µ(e|G) ≤ m − 1 and the
equality holds if and only if the edge is a pendant edge. For each edge e ∈ G, we define the
Deficiency of the edge denoted by de as de = m−1−µ(e|G). Deficiency De(G) of the graph G
is the sum of the deficiencies over all of its edges and consequently De(G) =

∑
e∈G de. Clearly,

Moe(G) +De(G) = m(m− 1). If G ∈ Bn, then Moe(G) +De(G) = n2 +n. From the definition
of Deficiency we have the following result.

Corollary 3.5. Let G be any graph with a cycle C. Then for any edge e ∈ C, de ≥ 2.
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Proof. For any edge e = xy ∈ C, there exist at least one edge in C closer to x than to y and at
least one edge in C closer to y than to x. Thus de ≥ 2. �

By Theorem 3.4 we have the following result.

Corollary 3.6. If G is a bicyclic graph on n ≥ 9 vertices which attains the maximum edge
Mostar index, then De(G) ≤ 24.

Figure 2: Bicyclic graphs with maximum Moe for orders 4,5.

Figure 3: Bicyclic graphs with maximum Moe for orders 6,7.

Theorem 3.7. Let G ∈ Bn be a bicyclic graph of order n ≥ 9. Then Moe(G) ≤ n2 + n − 24
and the equality holds if and only if G ∼= φ4,4,n−7.

Proof. Let G be a bicyclic graph of order n. If G ∈ Φa,b then by Theorem 3.4 Moe(G) ≤
n2 + n − 24 and the maximum obtains if and only if G ∼= φ4,4,n−7. Now, let G ∈ Θn be
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such that G attains maximum edge Mostar index, then by Corollary 3.6 De(G) ≤ 24. Now, if
a+ b+ c ≥ 13 then by Corollary 3.5, De(G) ≥ 26 which is not possible. Thus a+ b+ c ≤ 12.

Now we consider the case when a+ b+ c = 12. In each of the subcases for possible values of
a , b and c, there exist at least 7 edges such that de ≥ 6. Thus De(G) > 42 , impossible. When
a+ b+ c = 11 or 10, in each of the cases, there exist at least 6 edges such that de ≥ 5 and thus
De(G) > 30. When a+ b+ c = 9, except for a = 4, b = 4, c = 1 in each of the other cases, there
exist at least 6 edges such that de ≥ 5 and thus De(G) > 30. Now for a = 4, b = 4, c = 1 there
are 9 edges with de ≥ 4 and thus De(G) ≥ 36.

When a + b + c = 8, except for a = 4, b = 3, c = 1 and a = 3, b = 3, c = 2 in each
of the other cases there are at least 6 edges such that de ≥ 5 and hence De(G) > 30. For
a = 4, b = 3, c = 1 there are 4 edges with de ≥ 4 and 4 edges with de ≥ 3 implying De(G) ≥ 28.
For a = 3, b = 3, c = 2 there are 8 edges with de ≥ 4, thus De(G) ≥ 32. When a + b + c = 7,
except for a = 3, b = 3, c = 1 in each of the other cases there are at least 5 edges such that
de ≥ 4 and 2 edges with de ≥ 3, thus De(G) > 26. For a = 3, b = 3, c = 1 there are at least 3
edges such that de ≥ 6 and 4 edges with de ≥ 3, thus De(G) ≥ 30. When a + b + c = 6, for
a = 3, b = 2, c = 1, De(G) ≥ n + 17 ≥ 26, since n ≥ 9. For a = 2, b = 2, c = 2, De(G) ≥ 28.
When a+ b+ c = 5, for a = 2, b = 2, c = 1, De(G) = n+ 16 > 24 since n ≥ 9. Thus in each of
these cases Moe(G) ≤ n2 + n− 24, hence the result. �

As a consequence of the theorem, we have the following results.

Corollary 3.8. Let G ∈ Θn be a bicyclic graph with order n ≥ 9. Then Moe(G) ≤ n2 +n− 28
and equality holds if and only if G ∼= G′ where G′ is as in Figure 5.

Thus, we have disproved the conjecture proposed by H. Liu. As per the conjecture, the
graphs φ4,4,n−7 andG′ attains the maximum edge Mostar index, butMoe(φ4,4,n−7) = n2+n−24
and Moe(G

′) = n2 +n− 28, clearly Moe(φ4,4,n−7) > Moe(G
′). For graphs attaining maximum

value of edge Mostar index among bicyclic graphs of order 4 to 8, see Figure 2, Figure 3, and
Figure 4.

4 Lower bound
In this section, we give an alternate proof for the lower bound of the edge Mostar index of
bicyclic graphs. For proving Theorem 4.3, we modify the methods described in [16].

Theorem 4.1. For n ≥ 6, Moe(Θn−3,2,2) = 2n− 4.

Proof. When n is even, for
n− 4

2
edges of the path Pn−2 closer to v1 (as well as for v2),

µ(e|G) = 2. For the (
n− 4

2
+ 1)− th edge of the path Pn−2, µ(e|G) = 0 and for the rest of the

edges µ(e|G) = 1, thus Moe(Θn−3,2,2) = 2n − 4. When n is odd, for
n− 5

2
edges of the path

Pn−2 closer to v1 (as well as for v2), µ(e|G) = 2 and for the rest of the edges µ(e|G) = 1, thus
Moe(Θn−3,2,2) = 2n− 4. �

Corollary 4.2. If G is a bicyclic graph with n ≥ 9 vertices which attains the minimum value
of edge Mostar index, then Moe(G) ≤ 2n− 4.

Theorem 4.3. Let n ≥ 9, then Θn−3,2,2 is the unique bicyclic graph with the minimum edge
Mostar index.
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Figure 4: 8-vertex bicyclic graphs with the maximum edge Mostar index.

Proof. Let G ∈ Bn be the graph which attains minimum edge Mostar index. We prove the
result using the following claims.
Claim I: G cannot have any pendant edges.
Consider the case that G has 2 or more pendant edges, then µ(e|G) = n for each one, thus
Moe(G) ≥ 2n > 2n − 4 contradiction to Corollary 4.2. Thus G can not have more than one
pendant edge, now consider the case that G has exactly one pendant edge e, then we have three
different subcases:
Case IA: e is a pendant edge of a path of length 2 or more: If e is incident on a bridge
e′ which is not a part of the path connecting two cycles, then µ(e|G) + µ(e′|G) ≥ n+ n− 2 =
2n−2 > 2n−4, a contradiction. If e′ is part of a path of length t connecting two cycles Cr, Cs,
then there exist two edges each in Cr and Cs with µ(e|G) ≥ n+ 1− r and µ(e|G) ≥ n+ 1− s
respectively, thus Moe(G) ≥ 4(n+ 1)− 2(r + s) + n ≥ 3n+ 4 > 2n− 4, a contradiction.
Case IB: e is incident on a cycle where the two cycles have no common paths: Let
G be the bicyclic graph having two different cycles Cr and Cs with n = r + s + p, p ≥ 0, then
there exist two edges each in Cr and Cs with µ(e|G) ≥ s + p and µ(e|G) ≥ r + p respectively.
Thus Moe(G) ≥ 2(r + s+ 2p) + n = 3n+ 2p > 2n− 4, a contradiction.
Case IC: e is incident on a cycle where the two cycles have common path: Let
G = Θa,b,c with a pendant edge incident on some vertex of Θa,b,c where n = a + b + c. Then
except for possibly three edges (one each in Pa, Pb, Pc,) for all the other edges e, µ(e|G) ≥ 1.
Thus Moe(G) ≥ n + (a + b + c − 3) = 2n − 3 > 2n − 4, a contradiction. Thus G cannot have
any pendant edges.
Claim II: G cannot have any bridges.
Let e be a bridge of G, then e must be in the path of length t connecting two distinct
cycles Cr and Cs(otherwise there must exist a pendant edge which is not possible), then
n = r + s + t − 1, t ≥ 0. As in Case IB, Moe(G) ≥ 2(r + s + 2t) = 2n + 2t − 2 > 2n − 4, a
contradiction. Thus G cannot have any bridges.



Iranian Journal of Mathematical Chemistry 14 (2) (2023) 97− 108 105

Figure 5: G′ in Corollary 3.8.

Figure 6: Bicyclic graph with smallest edge Mostar index of order 13.

Claim III: G ∈ Θa,b,c.
Otherwise, suppose G contains two cycles which don’t have a common path. By Claim II, G
cannot have any bridges and hence in G the two cycles Cr and Cs must be identified at a single
vertex u with n = r + s − 1. Also, there exist two edges e, e′ of Cr incident with u and f, f ′
of Cs incident with u such that µ(e|G) ≥ s, µ(e′|G) ≥ s and µ(f |G) ≥ r, µ(f ′|G) ≥ r. Thus,
Moe(G) > 2(r + s) = 2n > 2n− 4, a contradiction.
Thus G should be isomorphic to Θa,b,c. Let w1, w2 be the vertices of degree 3 in G. According
to the difference between a, b and c, we divide into nine possible cases.
Case III.1: a = b = c, here n = 3a− 1 the three edges incident at w1 and w2 each contribute
at least (a − 1) to Moe. Also, there is at least one other edge e such that µ(e|G) ≥ 1. Thus
Moe(G) ≥ 6(a− 1) + 1 > 2n− 4, a contradiction.
Case III.2: a = b and c = b − 1. Two edges each incident at w1 and w2 contribute at least
(a−1) and one edge each incident at w1 and w2 contribute at least (c−1). Also, there exist one
more edge that contribute at least one. Thus Moe(G) ≥ (4a−4 + 2c−2) + 1 = 2n−3 > 2n−4
(since n = 2a+ c− 1), a contradiction.
Case III.3: a = b and b > c + 1. Two edges each incident at w1 and w2 contribute at least
(a−1) and one edge each incident at w1 and w2 contribute at least (c−1). Also, there exist one
more edge that contribute at least one. Thus Moe(G) > (4a− 4 + c− 2) + 1 = 2n− 3 > 2n− 4
(since n = 2a+ c− 1), a contradiction.
Case III.4: a = b + 1 and b = c. Two edges each incident at w1 and w2 contribute at least
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(b−1) and one edge each incident at w1 and w2 contribute at least (a−1). Also, there exist one
more edge that contribute at least one. Thus Moe(G) > (2a−2 + 4b−4) + 1 = 2n−3 > 2n−4
(since n = a+ 2b− 1), a contradiction.
Case III.5: a = b + 1 and c = b − 1. Three edges each incident at w1 and w2 contribute at
least a− 1, b, c− 1 respectively. Thus, Moe(G) > (2a+ 2b+ 2c− 4) = 2n− 2 > 2n− 4 (since
n = a+ b+ c− 1), a contradiction.
Case III.6: a = b + 1 and b > c + 1. Three edges each incident at w1 and w2 contribute at
least a − 1, b, c − 1 respectively. Also, there exist one more edge that contribute at least one.
Thus Moe(G) > 2a+ 2b+ 2c− 3 = 2n− 1 > 2n− 4 (since n = a+ b+ c− 1), a contradiction.

Case III.7: a > b + 1 and c = b − 1. For each of the vertices w1 and w2, there are three

edges incident at them which contribute at least (b−1), (c−1) and
(
c+

⌊
a− b

2

⌋)
to Moe(G)

respectively. Also, there are a− 3 edges that contribute at least one. Thus

Moe(G) ≥ 2

(
(b− 1) + (c− 1) +

(
c+

⌊
a− b

2

⌋))
+ a− 3 > 2a+ 3b+ 2c− 8 = 2n+ b− 6

and 2n+ b−6 < 2n−4 if b ≤ 2. Now b = 1 is not possible. If b = 2, then c = 1 and G = Θa,2,1.
When a ≥ 4 and n = a + 2 is odd, then Moe(G) = 3n − 7. Moe(G) = 3n − 7 < 2n − 4
whenever n < 3, a contradiction. When a ≥ 4 and n = a + 2 is even, Moe(G) = 3n − 8,
Moe(G) = 3n− 8 < 2n− 4 whenever n < 4, a contradiction.

Case III.8: a > b + 1 and b > c + 1. For each of the vertices w1 and w2 there are three
edges each incident at them which contribute at least a, b, c − 1 respectively. Thus Moe(G) >
2a+ 2b+ 2c− 2 = 2n > 2n− 4 (since n = a+ b+ c− 1), a contradiction.
Case III.9: a > b+ 1 and b = c. n = a+ 2b− 1, we divide it into four different cases. When
a, b are even, i.e, n is odd. There are at least a− 4 edges with µ(e|G) ≥ 2 and 2b− 2 edges with
µ(e|G) ≥ 1. Also, there are two edges with µ(e|G) ≥ b and four edges with µ(e|G) ≥ b−1, thus
Moe(G) ≥ 2a+8b−14 = 2n+4b−12 > 2n−4, when b ≥ 3. When a is even and b is odd, i.e, n is
odd. There are at least a−3 edges with µ(e|G) ≥ 2, 2b−5 edges with µ(e|G) ≥ 1, two edges with
µ(e|G) ≥ b, four edges with µ(e|G) ≥ b−1. ThusMoe(G) ≥ 2a+8b−15 = 2n+4b−13 > 2n−4,
when b ≥ 3. When a is odd and b is even, i.e, n is even. There are at least a − 3 edges with
µ(e|G) ≥ 2, 2b − 4 edges with µ(e|G) ≥ 1, two edges with µ(e|G) ≥ b, four edges with
µ(e|G) ≥ b − 1. Thus Moe(G) ≥ 2a + 8b − 14 = 2n + 4b − 12 > 2n − 4, when b ≥ 3.
When a, b are odd, i.e, n is even. There are at least a − 3 edges with µ(e|G) ≥ 2, 2b − 6
edges with µ(e|G) ≥ 1, two edges with µ(e|G) ≥ b, four edges with µ(e|G) ≥ b − 1. Thus
Moe(G) ≥ 2a + 8b − 16 = 2n + 4b − 14 > 2n − 4, when b ≥ 3. Thus in all these cases
Moe(G) > 2n− 4 when b ≥ 3, hence the only possibility is b = 2, i.e, G = Θn−3,2,2. �

Figure 6 is an example of a graph with smallest value of edge Mostar index among bicyclic
graphs of order 13.

5 Concluding remarks

Edge Mostar index is a recently defined topological index as an extension of the Mostar index.
In this paper, we have computed the extremum of the edge Mostar index for bicyclic graphs of
a given order and characterized the graphs attaining the bounds and thus settled a Conjecture
proposed in [1]. The computation of the edge Mostar index of various classes of molecular
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graphs is a problem that needs further research.
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