[1] B. Zheng and G. X. Gu, Machine learning-based detection of graphene defects with atomic
precision, Nano-Micro Lett. 12 (181) (2020) 1–13, https://doi.org/10.1007/s40820-020-
00519-w.
[2] N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhoub and Z. Jiao, Effect of defects on
Young’s modulus of graphene sheets: a molecular dynamics simulation, Rsc Advances 2
(2012) 9124–9129, https://doi.org/10.1039/C2RA21228E.
[3] W. Tian, W. Li, W. Yu and X. Liu, A review on lattice defects in graphene:
types, generation, effects and regulation, Micromachines (Basel) 8 (5) (2017) p. 163,
https://doi.org/10.3390/mi8050163.
[4] L. Vicarelli, S. J. Heerema, C. Dekker and H. W. Zandbergen, Controlling defects in
graphene for optimizing the electrical properties of graphene nanodevices, ACS Nano 9 (4)
(2015) 3428–3435, https://doi.org/10.1021/acsnano.5b01762.
[5] M. Archibald, S. Currie and M. Nowaczyk, Finding the hole in a wall, J. Math. Chem. 58
(2020) 2313–2323, https://doi.org/10.1007/s10910-020-01178-3.
[6] M. Archibald, S. Currie and M. Nowaczyk, Locating a double vacancy or Stone-
Wales point defect on a hexagonal quantum grid, J. Math. Chem. 60 (2022) 862–873,
https://doi.org/10.1007/s10910-022-01337-8.
[7] B. Gutkin and U. Smilansky, Can one hear the shape of a graph?, J. Phys. A: Math. Gen.
34 (2001) 6061–6068,
https://doi.org/10.1088/0305-4470/34/31/301.
[8] P. Kurasov and M. Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A:
Math. Gen. 38 (2005) 4901–4915, https://doi.org/10.1088/0305-4470/38/22/014.