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Abstract

A perfect star packing in a fullerene graph G is a spanning
subgraph of G whose every component is isomorphic to the star
graph K1,3. A perfect pseudo-matching of a fullerene graph G
is a spanning subgraph H of G such that each component of H
is either K2 or K1,3. In this paper, we calculate the number of
perfect star packing in some (3, 6)-fullerene graphs and perfect
pseudo-matching in Chamfered fullerene graphs.

c© 2023 University of Kashan Press. All rights reserved

1 Introduction

Fullerenes are polyhedral molecules containing only carbon atoms and pentagonal and hexagonal
faces. The first fullerene molecule was discovered experimentally in 1985 by Kroto et al. [1]. The
discovered molecule, C60, comprises only 60 carbon atoms and resembles Buckminster Fuller’s
geodesic dome. Thus, it was named buckminsterfullerene. Fullerene graphs are 3-regular, 3-
connected, planar graphs with pentagonal and hexagonal faces. Euler’s formula follows that
every fullerene graph’s number of pentagonal faces is always twelve. The existence of such
graphs on n vertices was established for all even n ≥ 20 except n = 22 in a paper by Grunbaum
and Motzkin [2]. Klien and Liu [3] show that fullerene graphs exist on n vertices with isolated
pentagons for n= 60 and for each even n≥70. To study some introductions on fullerene graphs,
we refer the reader to [4, 5]. Also, there are two infinite classes of fullerene graphs, the ones
with pentagons replaced by triangles and the ones with pentagons replaced by squares. They
are known as (3, 6)−fullerenes and (4, 6)−fullerenes, respectively.

A matching in a graph G is a set of independent edges of G, i.e., a set of edges such that no
two edges share a vertex. A matching is said to be perfect if every vertex of G is incident with
an edge from it. In chemistry, the perfect matching is called Kekulé structures. In other
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words, a perfect matching is a spanning subgraph whose all components are isomorphic to K2.
All fullerene graphs have perfect matchings since they have no bridges [6].

For given graphs, G and H, a perfect H-packing in G is a spanning subgraph of G whose all
components are isomorphic to H. If H is the star graph K1,3, it is called perfect star packing.
We refer the reader to [7, 8] for recent results and developments in this subject. In [9], authors
investigated which fullerene graphs allowed perfect star packings and defined a type of perfect
star packing called P0. A perfect star packing in G is of type P0 if no center of a star lies on
a pentagon of G. If in a spanning subgraph of G, each component is isomorphic to K1,3 or to
K2, then we have perfect pseudo-matching. For more on the problem of pseudo-matching and
the size of a perfect pseudo-matching in fullerene graphs, see [10].

In the two following sections, we investigate the number of perfect star packings and perfect
pseudo-matching in some fullerene graphs. Section 4 presents two forbidden configurations
whose presence in a fullerene graph G precludes the existence of a perfect star packing.

2 Number of perfect star packing in (3, 6)-fullerene graphs

In the following, for a fullerene graph G, we denote by PSP (G) the number of perfect star
packing in G. In each perfect star packing in a (3, 6)-fullerene graph, each triangle has a
maximum of one central vertex of the star. So, the packing of each triangle can be in the
following two forms. (Figure 1.)

Figure 1: Possible modes of packing a triangle.

Based on this, we examine the star packing in (3, 6) -fullerene graphs in different cases. We
have found in [9] a method for perfect star packing in (3, 6)-fullerene graphs. (3, 6)-fullerenes
with isolate triangles are called non-trivial and (3, 6)-fullerenes with a pair of adjacent triangles
are known as trivial. Trivial (3, 6)-fullerene graphs consisting of r concentric layers of hexagons
and two caps formed by two adjacent triangles. In the rest of this section, we will restrict to
trivial (3, 6) -fullerene graphs.

This section examines the different states of perfect star packing in trivial (3, 6)-fullerene
graphs. In paper [9], a perfect star packing for fullerene graphs is presented. Accordingly,
we will investigate how many possible packings are for trivial (3, 6)-fullerene graphs. A (3, 6)-
fullerene is defined by a triple (r, s, t) of non-negative integers, where r represents the number
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of hexagonal layers, s represents the number of spokes within each layer, and t represents the
twist. If G is a non-trivial (3, 6)-fullerene graph, s is at least 2.

Figure 2: Star packing in two circles.

First, we consider a packing of two circles in (3, 6)-fullerene graphs, as shown in Figure 2. In
this packing, vertex v1 is the center of a star. Next, we will have another packing in these two
circles by rotating the outer circle and considering vertex v2 as the center of a star. If r is even,
we can cover vertices in all rings with this packing. If r is odd, we continue the above process
for the number of r−1 circles; that is, we put a star in each pair of circles. Finally, one circle
remains, which is the cap. According to the issues raised in Theorem 25 of [9], there are two
packages for the cap. An example of packing in a (3, 6)-fullerene graph is shown in Figure 3.
In Figure 3, the vertex v1 is a central vertex of a star. If v3 is in the center of one star, we see
the situation in Figure 4.

So, the two inner circles can also have two packing modes. (v1 or v3 are in the center of
stars) Thus we can consider many packings for a trivial (3, 6)-fullerene graph. According to the
above argument, we will have the following theorem for trivial (3, 6)-Fullerene graphs.

Theorem 2.1. Let G be a trivial (3, 6)-Fullerene graph. Then PSP (G) = 3(2
r
2 ) if r is even,

and PSP (G) = 2
r+3
2 if r is odd.

Proof. In trivial cases, we consider four cases to cover caps as shown in Figure 5. We first
consider the case a. Then, to cover vertex V1, vertex V2 must be the central vertex of the star.
(See Figure 6).

So, we have covered the two inner circles in one mode. Now we consider each pair of
consecutive circles. We place the stars alternately on the inner and outer remaining circles,
resulting in a star packing for G. Now consider two successive circles. We specify an arbitrary
packing according to the mentioned method on these two circles (Figure 7). If r is even, we
cover each pair of other circles similarly. With this, we have covered r−2 circles. In this packing,
vertex v1 is the center of the star. We will have another packing in these two circles by rotating
in the outer circle and considering vertex v2 as the center of a star. Therefore, except for the
two inner circles that are covered in the manner shown in Figure 6, if we have r rings, then
PSP (G) in case a is equal to 2

r−2
2 . If we repeat the same process for case d, we will have 2

r−2
2

more packings. Now we consider modes b and c. In the case of b, suppose v2 is the center of
the star. (Figure 8). To cover vertex w, one of the vertices w1 or w2 must be the central vertex.
On the other hand, if w1 is a central vertex, the vertex w3 must be the central vertex, and if w2
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Figure 3: Perfect star packing in a trivial in a (3, 6)-fullerene graph.

Figure 4: Vertex v3 is in the center of one star.

is a central vertex, the vertex w4 must also be the central vertex. So we have covered the second
and third circles in two ways. If r is even, we cover each pair of other circles as mentioned in
the previous case. The outermost circle, which includes the cap, can also be covered in two
ways. Therefore, if we have r rings, then PSP (G) in case b equals to 2(2

r−2
2 ). If we repeat the

same process for case c, we will have 2(2
r−2
2 )packings. According to the above discussion, in

the case where r is even, we have
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Figure 5: Four cases to cover caps.

Figure 6: Case a.

PSP (G)=2
r−2
2 + 2

r−2
2 +2(2

r−2
2 ) + 2(2

r−2
2 ) = 3(2

r
2 ).

If r is odd, then with the arguments of the case that r is even, in cases a and d, we cover
the two inner circles as shown in Figure 6. There are 2

r−3
2 ways to cover the r− 3 more circles

except for the cap. Finally, we can cover the cap with 2 modes. So, in these two cases we have
2(2

r−3
2 ) ways. In cases b and c, there are 2

r−1
2 ways to cover the r − 1 more circles. Thus in

the case where r is odd, we have

PSP (G)= 2(2
r−3
2 ) + 2(2

r−3
2 ) + 2

r−1
2 + 2

r−1
2 = 4(2

r−3
2 ) + 2(2

r−1
2 ) = 2

r+3
2 .

�

For example, all possible modes in the case r = 2 are shown in Figure 9.
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Figure 7: Star packing in two circles.

Figure 8: Vertex v2 is in the center of one star.

3 Number of perfect pseudo-matching in chamfered fullerene
graphs

By applying some transformations, we can obtain fullerene graphs with more vertices from
fullerene graphs. The number of vertices in the resulting graph is usually a multiple of the
number of vertices in the original graph. One of these transformations is the leapfrog transfor-
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Figure 9: All modes of perfect star packing in case r = 2.

mation, which can be considered a truncation of the dual. It is seen that this operation triples
the number of vertices. Two other examples of these transformations are Chamfer and Capra.
We refer the reader to [11–14] for more information on these and some other transformations.

In this section, we will continue our discussion on how to work with Chamfer transformation.
Let G is a Fullerene graph. First, we draw a similar face in each face of G, as shown in Figure 10.
By connecting each vertex of the original fullerene to three vertices new polygon vertices, (Thick
lines in Figure 10) we complete the next step. Finally, erase the edges of the starting fullerene.
The resulting graph contains precisely twelve pentagons. The number of vertices in the new
fullerene is four times the number in the original fullerene. As the resulting graph is clearly
planar, 3-regular, and 3-connected, it is a fullerene graph. The resulting fullerene is called
Chamfered fullerene. The readers can see [15, 16] for more on the problem of Chamfered and
leapfrog fullerene graphs.

Theorem 3.1. For all n≥80, there are Chamfered fullerene graphs containing a mixed perfect
pseudo-matching with n

4 stars and t disjoint copies of K2 components. Where t∈N, 1≤t≤6.

Proof. As we know, we obtain a fullerene graph with 4k vertices by applying a Chamfer trans-
formation on each k vertices of the fullerene graph. The smallest Chamfer fullerene graph has
80 vertices. It is icosahedral C80 isomer that arises from the unique C20 isomer by the Chamfer
quadrupling transformation. For all n≥80, every Chamfer fullerene graphs have a perfect star
packing of type P0. [9]. (See Figure 11). Suppose P1 and P2 are the two pentagons in Figure 12
that are adjacent to the original fullerene graph.

By performing Endo-Kroto 2 vertex insertion, we obtain a fullerene graph on 8m+2 vertices
with one K2 component and n

4 stars. Furthermore, we will get a verdict if we repeat this
operation for any pair of pentagons with a common edge in the original fullerene graph. �

Figure 13 shows a perfect pseudo-matching in C80(Ih) with six K2 components.

Theorem 3.2. Let G be a Chamfered fullerene graph on n vertices; then G has a mixed perfect
pseudo-matching with n−4k

4 stars and 2k, K2 components.
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Figure 10: Chamfer transformation.

Figure 11: Perfect star packing of type P0.

Proof. From [9], every Chamfered fullerene graph like G has a perfect star packing of type P0.
(That no center of a star is on a pentagon of G, and all center of stars is on hexagons). Thus,
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Figure 12: Pentagons P1, P2.

Figure 13: Perfect pseudo-matching in C80(Ih).

we will have packing in each hexagon, as shown in Figure 14.
The number of stars in this packing is equal to n

4 . If we change the packing on a hexagon H,
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Figure 14: A packing in a hexagon.

as shown in Figure 15, we will have a packing with n
4−2 =n−8

4 stars and four K2 components.
We get the desired by continuing this process for all G hexagons. �

Figure 15: A packing in hexagon H.

4 Fullerene graphs with psp equal to zero

From [9], we know that a fullerene graph G with some forbidden configurations cannot have a
perfect star packing of type P0. Now we list two other forbidden configurations. Therefore if
these forbidden configurations exist in a fullerene graph G, then G does not have a perfect star
packing of type P0.

Proposition 4.1. If a fullerene graph G contains a subgraph, as shown in Figure 15, it cannot
have a perfect star packing of type P0.

Proof. We suppose G has a perfect star packing of type P0. Then, if part b in Figure 16 is a
subgraph of G (For the other case, we can Let’s conclude with a similar discussion), for cover
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v1, the vertex u1 must be the center of a star because, in a perfect star packing of type P0, no
center of a star is on a pentagon of G. On the other hand, to cover v2, the vertex u2 must be
the star’s center, which is impossible. �

Figure 16: Two forbidden configurations.

Let us denote by PSP0(G) the number of perfect star packing of type P0; then, we will
have the following corollary.

Corollary 4.2. Let G be a fullerene graph containing the forbidden subgraphs of Proposi-
tion 4.1, then PSP0(G) = 0.
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