Spectral Poly-Sinc Collocation Method for Solving a Singular Nonlinear BVP of Reaction-Diffusion with Michaelis-Menten Kinetics in a Catalyst/Biocatalyst

Document Type : Research Paper

Author

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

In this paper we revisit a nonlinear singular boundary value problem (SBVP) which arises frequently in mathematical model of diffusion and reaction in porous catalysts or biocatalyst pellets. A new simple variant of sinc methods so-called poly-sinc collocation method, is presented to solve non-isothermal reaction-diffusion model equation in a spherical catalyst and reaction-diffusion model equation in an electroactive polymer film. This method reduces each problem into a system of nonlinear algebraic equations, and on solving them by Newton's iteration method, we obtain the approximate solution. Through testing with numerical examples, it is found that our technique has exponentially decaying error property and performs well near singularity like other conventional sinc methods. The obtained results are in good agreement with previously reported results in the literature, and there is an impressive degree of agreement between our results and those obtained by a MAPLE ODE solver. Furthermore, the high accuracy of method is verified by using a residual evaluation strategy.

Keywords


[1] R. A. Sheldon and J. M. Woodley, Role of biocatalysis in sustainable Chemistry, Chem. Rev. 118 (2) (2018) 801–838, https://doi.org/10.1021/acs.chemrev.7b00203.
[2] G. de Gonzalo and P. Domínguez de María, Biocatalysis: An Industrial Perspective, Royal Society of Chemistry, London, UK, 2018.
[3] R. A. Sheldon, A. Basso and D. Brady, New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy, Chem. Soc. Rev. 50 (10) (2021) 5850–5862, https://doi.org/10.1039/D1CS00015B.
[4] J. C. Gottifredi and E. E. Gonzo, On the effectiveness factor calculation for a reactiondiffusion process in an immobilized biocatalyst pellet, Biochem. Eng. J. 24 (3) (2005) 235–242, https://doi.org/10.1016/j.bej.2005.03.003.
[5] S. Chandrasekhar, Introduction to study of stellar structure, Dover, New York, 1967.
[6] A. Saadatmandi, A. Ghasemi-Nasrabady and A. Eftekhari, Numerical study of singular fractional Lane-Emden type equations arising in astrophysics, J. Astrophys. Astron. 40 (3) (27) (2019) 1–12, http://doi.org/10.1007/s12036-019-9587-0.
[7] A. Saadatmandi, N. Nafar and S. P. Toufighi, Numerical study on the reaction cum diffusion process in a spherical biocatalyst, Iranian. J. Math. Chem. 5 (1) (2014) 47–61, https://doi.org/10.22052/ijmc.2014.5539.
[8] E. Babolian, A. Eftekhari and A. Saadatmandi, A sinc-Galerkin approximate solution of the reaction-diffusion process in an immobilized biocatalyst pellet, MATCH Commun. Math. Comput. Chem. 71 (3) (2014) 681–697.
[9] E. Babolian, A. Eftekhari and A. Saadatmandi, A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, Comp. Appl. Math. 34 (1) (2015) 45–63, http://doi.org/10.1007/s40314-013-0103-x.
[10] A. M. Wazwaz, Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method, Chem. Phys. Lett. 679 (2017) 132–136, http://doi.org/10.1016/j.cplett.2017.04.077.
[11] R. Singh, Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst, J. Math. Chem. 56 (9) (2018) 2579–2590, http://doi.org/10.1007/s10910-018-0911-8.
[12] M. Faheem, A. Khan and E. R. El-Zahar, On some wavelet solutions of singular differential equations arising in the modeling of chemical and biochemical phenomena, Adv. Differ. Equ. 2020 (1) (2020) 1–23, https://doi.org/10.1186/s13662-020-02965-7.
[13] R. Usha Rani and L. Rajendran, Taylor’s series method for solving the nonlinear reactiondiffusion equation in the electroactive polymer film, Chem. Phys. Lett. 754 (2020) 137573, http://dx.doi.org/10.1016/j.cplett.2020.137573.
[14] B. Jamal and S. A. Khuri, Non-isothermal reaction-diffusion model equations in a spherical biocatalyst: Green’s function and fixed point iteration approach, Int. J. Appl. Comput. Math. 5 (2019) 1–9, https://doi.org/10.1007/s40819-019-0704-1.
[15] D. B. Meade, B. S. Haran and R. E. White, The shooting technique for the solution of two-point boundary value problems, Maple Tech. Newsl. 3 (1) (1996) 1–8.
[16] K. Kulkarni, J. Moon, L. Zhang, A. Lucia and A. A. Linninger, Multiscale modeling and solution multiplicity in catalytic pellet reactors. Ind. Eng. Chem. Res. 47 (22) (2008) 8572–8581, http://doi.org/10.1021/ie8003978.
[17] P. B. Weisz and J. S. Hicks, The behavior of porous catalyst particles in view of internal mass and heat diffusion effects, Chem. Eng. Sci. 17 (4) (1962) 265–275, https://doi.org/10.1016/0009-2509(62)85005-2.
[18] K. J. Laidler, Chemical Kinetics, 3rd edition, Harper and Row, New York, 1987.
[19] V. Ananthaswamy, R. Shanthakumari and M. Subha, Simple analytical expressions of the non-linear reaction diffusion process in an immobilized biocatalyst particle using the new homotopy perturbation method, Rev. Bioinform. Biometr. 3 (2014) 22–28.
[20] MP. Alam, T. Begum and A. Khan, A new Spline algorithm for solving non-isothermal reaction diffusion model equations in a spherical catalyst and spherical biocatalyst, Chem. Phys. Lett. 754 (2020) p. 137651, http://doi.org/10.1016/j.cplett.2020.137651.
[21] K. L. Brown, Electrochemical Preparation and Characterization of Chemically Modified Electrodes, In Voltammetry. IntechOpen, 2018, http://doi.org/10.5772/intechopen.81752.
[22] G. Rahamathunissa and L. Rajendran, Modeling of nonlinear reaction-diffusion processes of amperometric polymer-modified electrodes, J. Theor. Comput. Chem. 7 (1) (2008) 113–138, https://doi.org/10.1142/S0219633608003642.
[23] M. E. G. Lyons, Understanding the kinetics of catalysed reactions in microheterogeneous thin film electrodes, J. Electroanal. Chem. 872 (2020) p. 114278, https://doi.org/10.1016/j.jelechem.2020.114278.
[24] A. Meena and L. Rajendran, Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations - Homotopy perturbation approach, J. Electroanal. Chem. 644 (1) (2010) 50–59, https://doi.org/10.1016/j.jelechem.2010.03.027.
[25] A. Shanmugarajan, S. Alwarappan, S. Somasundaram and R. Lakshmanan, Analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method, Electrochim. Acta 56 (9) (2011) 3345–3352, http://doi.org/10.1016/j.electacta.2011.01.014.
[26] A. Shanmugarajan, S. Alwarappan and R. Lakshmanan, Approximate analytical solution of nonlinear reaction’s diffusion equation at conducting polymer ultramicroelectrodes, int. sch. res. notices 2012 (2012) 1–12, https://doi.org/10.5402/2012/745616.
[27] K. M. Dharmalingam and M. Veeramuni, Akbari-Ganji’s Method (AGM) for solving nonlinear reaction-diffusion equation in the electroactive polymer film, J. Electroanal. Chem. 844 (2019) 1–5, https://doi.org/10.1016/j.jelechem.2019.04.061.
[28] G. Rahamathunissa, P. Manisankar, L. Rajendran and K. Venugopal, Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes, J. Math. Chem. 49 (2011) 457–474, https://doi.org/10.1007/s10910-010-9752-9.
[29] A. Malvandi and D. D. Ganji, A general mathematical expression of amperometric enzyme kinetics using He’s variational iteration method with Padé approximation, J. Electroanal. Chem. 711 (2013) 32–37, http://doi.org/10.1016/j.jelechem.2013.10.020.
[30] F. Stenger, Polynomial function and derivative approximation of Sinc data, J. Complex. 25 (3) (2009) 292–302, https://doi.org/10.1016/j.jco.2009.02.010.
[31] M. Youssef and G. Baumann, Solution of nonlinear singular boundary value problems using polynomial-sinc approximation, Commun. Fac. Sci. Univ. Ank. Series A1 63 (2) (2014) 41–58.
[32] M. Youssef, H. A. El-Sharkawy and G. Baumann, Lebesgue constant using sinc points, Adv. Numer. Anal. 2016 (2016) p. 1–10, https://doi.org/10.1155/2016/6758283.
[33] F. Stenger, M. Youssef and J. Niebsch, Improved approximation via use of transformations, in: X. Shen and A. I. Zayed, (eds.) Multiscale Signal Analysis and Modeling, Springer, NewYork, (2013) 25–49, http://doi.org/10.1007/978-1-4614-4145-8-2.
[34] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.
[35] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, Inc. 1993.
[36] P. Erdos, Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hungar. 12 (1961) 235–244, https://doi.org/10.1007/BF02066686.
[37] T. J. Rivlin, The Lebesgue constants for polynomial interpolation, in: H. Garnir, K. Unni and J. H. Williamson, (eds.) Functional Analysis and its Applications, Lecture Notes in Mathematics, 399, Springer, Berlin, (1974) 442–437,
https://doi.org/10.1007/BFb0063594.
[38] M. Youssef and G. Baumann, Solution of Lane-Emden type equations using polynomial- Sinc collocation method, Int. Sc. Jr. Jr. of Math. 2 (1) (2015) 1–14.
[39] M. Youssef and G. Baumann, Collocation method to solve elliptic equations, bivariate poly-sinc approximation, J. Progress. Res. Math. 7 (3) (2016) 1079–1091, https://doi.org/10.5281/zenodo.3977339.
[40] M. Youssef and G. Baumann, Troesch’s problem solved by Sinc methods. Math. Comput. Simul. 162 (2019) 31–44, http://doi.org/10.1016/j.matcom.2019.01.003.
[41] N. Moshtaghi and A. Saadatmandi, Polynomial-Sinc collocation method combined with the Legendre-Gauss quadrature rule for numerical solution of distributed order fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2) (2021) 1–23, https://doi.org/10.1007/s13398-020-00976-3.
[42] N. Moshtaghi and A. Saadatmandi, Numerical solution for diffusion equations with distributed-order in time based on sinc-Legendre collocation method, Appl. Comput. Math. 19 (3) (2020) 317–335.
[43] M. Youssef and R. Pulch, Poly-Sinc solution of stochastic elliptic differential equations, J. Sci. Comput. 87 (3) (2021) p. 82, https://doi.org/10.1007/s10915-021-01498-9.
[44] S. J. Smith, Lebesgue constants in polynomial interpolation, Ann. Math. Inform. 33 (2006) 109–123.
[45] B. A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation, J. Inequal. Appl. (2016) 1–15, https://doi.org/10.1186/s13660-016-1030-3.
[46] J. Shen, T. Tang and L. L.Wang, Spectral Methods, Algorithms, Analysis and Applications, Springer Berlin, Heidelberg, 2011.