[1] R. A. Sheldon and J. M. Woodley, Role of biocatalysis in sustainable Chemistry, Chem. Rev. 118 (2) (2018) 801–838, https://doi.org/10.1021/acs.chemrev.7b00203.
[2] G. de Gonzalo and P. Domínguez de María, Biocatalysis: An Industrial Perspective, Royal Society of Chemistry, London, UK, 2018.
[3] R. A. Sheldon, A. Basso and D. Brady, New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy, Chem. Soc. Rev. 50 (10) (2021) 5850–5862, https://doi.org/10.1039/D1CS00015B.
[4] J. C. Gottifredi and E. E. Gonzo, On the effectiveness factor calculation for a reactiondiffusion process in an immobilized biocatalyst pellet, Biochem. Eng. J. 24 (3) (2005) 235–242, https://doi.org/10.1016/j.bej.2005.03.003.
[5] S. Chandrasekhar, Introduction to study of stellar structure, Dover, New York, 1967.
[6] A. Saadatmandi, A. Ghasemi-Nasrabady and A. Eftekhari, Numerical study of singular fractional Lane-Emden type equations arising in astrophysics, J. Astrophys. Astron. 40 (3) (27) (2019) 1–12, http://doi.org/10.1007/s12036-019-9587-0.
[7] A. Saadatmandi, N. Nafar and S. P. Toufighi, Numerical study on the reaction cum diffusion process in a spherical biocatalyst, Iranian. J. Math. Chem. 5 (1) (2014) 47–61, https://doi.org/10.22052/ijmc.2014.5539.
[8] E. Babolian, A. Eftekhari and A. Saadatmandi, A sinc-Galerkin approximate solution of the reaction-diffusion process in an immobilized biocatalyst pellet, MATCH Commun. Math. Comput. Chem. 71 (3) (2014) 681–697.
[9] E. Babolian, A. Eftekhari and A. Saadatmandi, A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, Comp. Appl. Math. 34 (1) (2015) 45–63, http://doi.org/10.1007/s40314-013-0103-x.
[10] A. M. Wazwaz, Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method, Chem. Phys. Lett. 679 (2017) 132–136, http://doi.org/10.1016/j.cplett.2017.04.077.
[11] R. Singh, Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst, J. Math. Chem. 56 (9) (2018) 2579–2590, http://doi.org/10.1007/s10910-018-0911-8.
[12] M. Faheem, A. Khan and E. R. El-Zahar, On some wavelet solutions of singular differential equations arising in the modeling of chemical and biochemical phenomena, Adv. Differ. Equ. 2020 (1) (2020) 1–23, https://doi.org/10.1186/s13662-020-02965-7.
[13] R. Usha Rani and L. Rajendran, Taylor’s series method for solving the nonlinear reactiondiffusion equation in the electroactive polymer film, Chem. Phys. Lett. 754 (2020) 137573, http://dx.doi.org/10.1016/j.cplett.2020.137573.
[14] B. Jamal and S. A. Khuri, Non-isothermal reaction-diffusion model equations in a spherical biocatalyst: Green’s function and fixed point iteration approach, Int. J. Appl. Comput. Math. 5 (2019) 1–9,
https://doi.org/10.1007/s40819-019-0704-1.
[15] D. B. Meade, B. S. Haran and R. E. White, The shooting technique for the solution of two-point boundary value problems, Maple Tech. Newsl. 3 (1) (1996) 1–8.
[16] K. Kulkarni, J. Moon, L. Zhang, A. Lucia and A. A. Linninger, Multiscale modeling and solution multiplicity in catalytic pellet reactors. Ind. Eng. Chem. Res. 47 (22) (2008) 8572–8581, http://doi.org/10.1021/ie8003978.
[17] P. B. Weisz and J. S. Hicks, The behavior of porous catalyst particles in view of internal mass and heat diffusion effects, Chem. Eng. Sci. 17 (4) (1962) 265–275, https://doi.org/10.1016/0009-2509(62)85005-2.
[18] K. J. Laidler, Chemical Kinetics, 3rd edition, Harper and Row, New York, 1987.
[19] V. Ananthaswamy, R. Shanthakumari and M. Subha, Simple analytical expressions of the non-linear reaction diffusion process in an immobilized biocatalyst particle using the new homotopy perturbation method, Rev. Bioinform. Biometr. 3 (2014) 22–28.
[20] MP. Alam, T. Begum and A. Khan, A new Spline algorithm for solving non-isothermal reaction diffusion model equations in a spherical catalyst and spherical biocatalyst, Chem. Phys. Lett. 754 (2020) p. 137651, http://doi.org/10.1016/j.cplett.2020.137651.
[21] K. L. Brown, Electrochemical Preparation and Characterization of Chemically Modified Electrodes, In Voltammetry. IntechOpen, 2018, http://doi.org/10.5772/intechopen.81752.
[22] G. Rahamathunissa and L. Rajendran, Modeling of nonlinear reaction-diffusion processes of amperometric polymer-modified electrodes, J. Theor. Comput. Chem. 7 (1) (2008) 113–138, https://doi.org/10.1142/S0219633608003642.
[23] M. E. G. Lyons, Understanding the kinetics of catalysed reactions in microheterogeneous thin film electrodes, J. Electroanal. Chem. 872 (2020) p. 114278, https://doi.org/10.1016/j.jelechem.2020.114278.
[24] A. Meena and L. Rajendran, Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations - Homotopy perturbation approach, J. Electroanal. Chem. 644 (1) (2010) 50–59, https://doi.org/10.1016/j.jelechem.2010.03.027.
[25] A. Shanmugarajan, S. Alwarappan, S. Somasundaram and R. Lakshmanan, Analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method, Electrochim. Acta 56 (9) (2011) 3345–3352, http://doi.org/10.1016/j.electacta.2011.01.014.
[26] A. Shanmugarajan, S. Alwarappan and R. Lakshmanan, Approximate analytical solution of nonlinear reaction’s diffusion equation at conducting polymer ultramicroelectrodes, int. sch. res. notices 2012 (2012) 1–12, https://doi.org/10.5402/2012/745616.
[27] K. M. Dharmalingam and M. Veeramuni, Akbari-Ganji’s Method (AGM) for solving nonlinear reaction-diffusion equation in the electroactive polymer film, J. Electroanal. Chem. 844 (2019) 1–5, https://doi.org/10.1016/j.jelechem.2019.04.061.
[28] G. Rahamathunissa, P. Manisankar, L. Rajendran and K. Venugopal, Modeling of nonlinear boundary value problems in enzyme-catalyzed reaction diffusion processes, J. Math. Chem. 49 (2011) 457–474, https://doi.org/10.1007/s10910-010-9752-9.
[29] A. Malvandi and D. D. Ganji, A general mathematical expression of amperometric enzyme kinetics using He’s variational iteration method with Padé approximation, J. Electroanal. Chem. 711 (2013) 32–37,
http://doi.org/10.1016/j.jelechem.2013.10.020.
[30] F. Stenger, Polynomial function and derivative approximation of Sinc data, J. Complex. 25 (3) (2009) 292–302, https://doi.org/10.1016/j.jco.2009.02.010.
[31] M. Youssef and G. Baumann, Solution of nonlinear singular boundary value problems using polynomial-sinc approximation, Commun. Fac. Sci. Univ. Ank. Series A1 63 (2) (2014) 41–58.
[32] M. Youssef, H. A. El-Sharkawy and G. Baumann, Lebesgue constant using sinc points, Adv. Numer. Anal. 2016 (2016) p. 1–10, https://doi.org/10.1155/2016/6758283.
[33] F. Stenger, M. Youssef and J. Niebsch, Improved approximation via use of transformations, in: X. Shen and A. I. Zayed, (eds.) Multiscale Signal Analysis and Modeling, Springer, NewYork, (2013) 25–49, http://doi.org/10.1007/978-1-4614-4145-8-2.
[34] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.
[35] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, Inc. 1993.
[36] P. Erdos, Problems and results on the theory of interpolation II, Acta Math. Acad. Sci. Hungar. 12 (1961) 235–244, https://doi.org/10.1007/BF02066686.
[37] T. J. Rivlin, The Lebesgue constants for polynomial interpolation, in: H. Garnir, K. Unni and J. H. Williamson, (eds.) Functional Analysis and its Applications, Lecture Notes in Mathematics, 399, Springer, Berlin, (1974) 442–437,
https://doi.org/10.1007/BFb0063594.
[38] M. Youssef and G. Baumann, Solution of Lane-Emden type equations using polynomial- Sinc collocation method, Int. Sc. Jr. Jr. of Math. 2 (1) (2015) 1–14.
[39] M. Youssef and G. Baumann, Collocation method to solve elliptic equations, bivariate poly-sinc approximation, J. Progress. Res. Math. 7 (3) (2016) 1079–1091, https://doi.org/10.5281/zenodo.3977339.
[40] M. Youssef and G. Baumann, Troesch’s problem solved by Sinc methods. Math. Comput. Simul. 162 (2019) 31–44, http://doi.org/10.1016/j.matcom.2019.01.003.
[41] N. Moshtaghi and A. Saadatmandi, Polynomial-Sinc collocation method combined with the Legendre-Gauss quadrature rule for numerical solution of distributed order fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2) (2021) 1–23, https://doi.org/10.1007/s13398-020-00976-3.
[42] N. Moshtaghi and A. Saadatmandi, Numerical solution for diffusion equations with distributed-order in time based on sinc-Legendre collocation method, Appl. Comput. Math. 19 (3) (2020) 317–335.
[43] M. Youssef and R. Pulch, Poly-Sinc solution of stochastic elliptic differential equations, J. Sci. Comput. 87 (3) (2021) p. 82, https://doi.org/10.1007/s10915-021-01498-9.
[44] S. J. Smith, Lebesgue constants in polynomial interpolation, Ann. Math. Inform. 33 (2006) 109–123.
[45] B. A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation, J. Inequal. Appl. (2016) 1–15,
https://doi.org/10.1186/s13660-016-1030-3.
[46] J. Shen, T. Tang and L. L.Wang, Spectral Methods, Algorithms, Analysis and Applications, Springer Berlin, Heidelberg, 2011.