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The degree and distance both are significant concepts in graphs 
with wide spread utilization. The combined study of these 
concepts has given a new direction to the topological indices. In 
this article, we present the generalized degree distance indices 
(Generalized First Schultz indices) ܦܦ(ܽ,ܾ) and generalized 
Gutman indices (Second Schultz indices) ܼܼ(ܽ,ܾ). The 
computed values of these indices on certain families of graphs 
along with some bounds and characterizations are obtained. 
Also, we present the relationship between ܦܦ(ܽ, ܾ) and 
ܼܼ(ܽ,ܾ). Further, we present the Schultz polynomials along 
with the statistical analysis of certain graphs. 
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1. INTRODUCTION   

The graph	ܩ	 = 	  which is discussed in this paper is finite, undirected graph, without ,(ܧ,ܸ)
loops or multiple edges. In general, we use,	݌	 = 	 |ܸ| and ݍ	 = 	  to denote the number of |ܧ|
vertices and edges of a graph	ܩ, respectively. The number of edges adjacent to a vertex 
called the degree of a vertex; the minimum degree is denoted by (ܩ)ߜ	and the maximum 
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degree is denoted by	∆(ܩ). For graph-theoretical terminology and notation not defined here 
we follow [2], [7] and [18]. 
The degree distance indices (First Schultz indices) and Gutman indices (Second Schultz 
indices) are well known. The Schultz index was introduced by Harry P. Schultz [13] in 
1989 defined as molecular topological index (ܩ)ܫܶܯ = ∑ ܣ)ݒ| + ௣|(ܦ

௜ୀଵ , where ܣ  and 
ܦ = ฮ݀(ݑ௜, ݒ	and	ܩ		are the adjacency and distance matrices of	௝)ฮݑ = (d(ݒଵ), 
d(ݒଶ),…,d(ݒ௣)), respectively, see [5]. Dobrynin et al. [5] and Gutman [9] separately 
studied the weighted version of Wiener index and the Gutman indices. Here, we study the 
generalized version of the first and second Schultz indices. For more details, we refer to [1, 
3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17] and [18]. 
 
2. THE FIRST GENERALIZED SCHULTZ INDEX 

For any positive real values ܽ and ܾ, the generalized first Schultz index is given by 

(ܩ)(௔,௕)ܦܦ = ∑ (௜ݑ)݀) + (ீ)௕{௨೔,௨ೕ}⊆௏((௝ݑ,௜ݑ)݀)௔((௝ݑ)݀ . 

Here, we obtained bounds of ܦܦ(௔,௕)(ܩ) in terms of order ݌, size ݍ, maximum 
degree ∆(ܩ), minimum degree (ܩ)ߜ, distance ݀(ݑ௜,  .(ܩ)݀ܽݎ ௝) and radiusݑ

Theorem 2.1. For any connected graph ܩ with radius (ܩ)݀ܽݎ, 
௣(௣ିଵ)

ଶ
௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ] ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣(௣ିଵ)

ଶ
 .௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)∆]

 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 

(ܩ)ߜ ≤ (௜ݑ)݀ + ݀൫ݑ௝൯ ≤                                          (1)                                     			.(ܩ)∆

ଶ௔((ܩ)ߜ)																																				 ≤ ቀ݀(ݑ௜) + ݀൫ݑ௝൯ቁ
௔
≤ ൫∆(ܩ)൯ଶ௔ .																	            (2)  

(ܩ)݀ܽݎ ≤ ݀൫ݑ௜, ௝൯ݑ ≤                                (3)                                        			.(ܩ)݀ܽݎ2
௕((ܩ)݀ܽݎ)																							 ≤ ,௜ݑ)݀) ௝))௕ݑ ≤ ௕((ܩ)݀ܽݎ2) .                                 (4)  

Multiplying equations (2) and (4), we have 
௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ] ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜, ௝))௕ݑ ≤  		௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)∆]

௣(௣ିଵ)
ଶ

௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ] ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣(௣ିଵ)
ଶ

 .௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)∆]
■ 

 
Theorem 2.2. For any connected graph ܩ with ݌ ≥ 3, 

௣(௣ିଵ)
ଶ

2௔[(ܩ)݀ܽݎ]௕ ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣
ଶ

2௔(݌ − 1)௔ାଵ[2(ܩ)݀ܽݎ]௕. 
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Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
                                         		1 ≤ (௜ݑ)݀ ≤ ݌ − 1.                                                                   (5)                             
                                        			2 ≤ (௜ݑ)݀ + ݀൫ݑ௝൯ ≤ 2(p− 1).					                                           (6)                                         
																																														2௔ ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔ ≤ (2(p− 1))௔ .                                     (7)  
௕((ܩ)݀ܽݎ)																															 ≤ ,௜ݑ)݀) ௝))௕ݑ ≤ ௕((ܩ)݀ܽݎ	2) .                                             (8)  
Multiplying equations (7) and (8), we have 

2௔[(ܩ)݀ܽݎ]௕ ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜,ݑ௝))௕ ≤ [2(p− 1)]௔[(ܩ)݀ܽݎ]௕ . 

					௣(௣ିଵ)
ଶ

2௔[(ܩ)݀ܽݎ]௕ ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣
ଶ

2௔[(p− 1)]௔ାଵ[2(ܩ)݀ܽݎ]௕.                               ■ 
 
Theorem 2.3. Let	ܩ be any connected graph with ݌ ≥ 3. Then, 

௣(௣ିଵ)
ଶ

2௔ ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣
ଶ

2௔(݌ − 1)௔ା௕ାଵ. 
 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
																																														2௔ ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔ ≤ (2(p− 1))௔ .                                     (9)  
																																																1 ≤ ,௜ݑ)݀ (௝ݑ ≤ ݌ − 1.                                                             (10)  
																																																1 ≤ ௕((௝ݑ,௜ݑ)݀) ≤ ݌) − 1)௕ .                                                  (11)  
Multiplying equations (9) and (11), we have 

																													2௔ ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜,ݑ௝))௕ ≤ [2(p− 1)]௔(݌ − 1)௕ . 
݌)݌ − 1)

2 2௔ ≤ (ܩ)(௔,௕)ܦܦ ≤
݌)݌ − 1)

2 [2(p− 1)]௔(݌ − 1)௕ .						 

																															௣(௣ିଵ)
ଶ

2௔ ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣
ଶ

2௔(݌ − 1)௔ା௕ାଵ.                                            ■ 
 
Theorem 2.4. For any connected graph ܩ with ݌ ≥ 3, 

௣(௣ିଵ)
ଶ

௔((ܩ)ߜ2) ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣
ଶ

݌)௔((ܩ)∆2) − 1)௕ାଵ. 
 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 

௔((ܩ)ߜ2)													   ≤ (௜ݑ)݀) + ݀൫ݑ௝൯)௔ ≤ ௔(	(ܩ)∆2) .																				     (12)   
																																																																			1 ≤ ݀൫ݑ௜, ௝൯ݑ ≤ ݌ − 1.                                            (13)  
																																																																		1 ≤ ,௜ݑ)݀) ௝))௕ݑ ≤ ݌) − 1)௕ .	                                 (14)  
Multiplying equations (12) and (14), we have 
																														௣(௣ିଵ)

ଶ
௔((ܩ)ߜ2) ≤ (ܩ)(௔,௕)ܦܦ ≤ ௣

ଶ
݌)௔((ܩ)∆2) − 1)௕ାଵ.                         ■ 

 
Theorem 2.5. Let ܩ	be any connected graph with p≥ 3 vertices. Then, 

݌)ݍ4) − ௔((ܩ)ଵܯ−(1 + ൫2(ܩ)ߜ൯௔൫2ܹ(ܩ) + ݍ − ݌)݌ − 1)൯௕ ≤  (ܩ)(௔,௕)ܦܦ

								≤ ݌)ݍ4) − ௔((ܩ)ଵܯ−(1 + ൫2∆(ܩ)൯௔൫2ܹ(ܩ) + ݍ − ݌)݌ − 1)൯௕. 
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Proof. Let ܩ be a connected graph with ݌ ≥ 3. Then, we prove the upper bound, 
 
(ܩ)(௔,௕)ܦܦ = ∑ (ீ)௕௨೔∈௏(௜ݑ)ܦ௔(௜ݑ)݀ 	=	∑ ௔(௜ݑ)݀ ∑ (ீ)௕௨೔∈௏(ீ)௨೔∈௏(௜ݑ)ܦ  

							= ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜,ݑ௝))௕
{௨೔,௨ೕ}⊆௏(ீ)

																																														 

																	= ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔
௨೔,௨ೕ∈ா(ீ)

+ ෍ (௜ݑ)݀)2 + ݀൫ݑ௝൯)௔
݅ݑ} ௗ(௨೔,௨ೕ)ஹଶ	;(ܩ)ܸ⊇{݆ݑ,

 

			+෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀൫ݑ௜, ௝൯ݑ − 2)௕
ௗ(௨೔,௨ೕ)ஹଶ	;(ܩ)ܸ⊇{݆ݑ,݅ݑ}

																					 

																		≤ ෍ ଶ௔((௜ݑ)݀) + ෍ ݌)(௜ݑ)݀) − −(௜ݑ)݀ 1) + ݍ2) − (௜ݑ)݀ − ௜))௔ߤ(௜ݑ)݀
௣

௜ୀଵ

௣

௜ୀଵ
 

+෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀൫ݑ௜ ௝൯ݑ, − 2)௕
ଵஸ௜ஸ௝ஸ௣;	ௗ(௨೔,௨ೕ)ஹଶ

.																						 

 

Since, we have (2ߜ)௔ ≤ ∑ቀ݀(ݑ௜) + ݀൫ݑ௝൯ቁ
௔
≤ (2∆)௔ 

 where ݀(ݑ௜)ߤ௜ = ∑ ݀൫ݑ௝൯௨೔,௨ೕ∈ா(ீ)  
≤ ݌)ݍ4) −  																																																															௔((ܩ)ଵܯ−(1

∑) ௔((ܩ)∆2)+                           (݀൫ݑ௜, ௝൯ݑ − 2௨೔,௨ೕ∈௏(ீ);	ௗ(௨೔,௨ೕ)ஹଶ ∑ 1)௨೔,௨ೕ∈௏(ீ);	ௗ(௨೔,௨ೕ)ஹଶ
௕
, 

where ܯଵ(ܩ) = ∑ ଶ௣((௜ݑ)݀)
௜ୀଵ = ∑ ௜ߤ(௜ݑ)݀

௣
௜ୀଵ  

			≤ ݌)ݍ4) − ௔((ܩ)ଵܯ−(1 + (ܩ)௔(2ܹ((ܩ)∆2) + ݍ − ݌)݌ − 1))௕ . 
 
To prove the lower bound we have 
 
(ܩ)(௔,௕)ܦܦ = ∑ ௕(௜ݑ)ܦ௔(௜ݑ)݀ = ∑ ௔(௜ݑ)݀ ∑ (ீ)௕௨೔∈௏(௜ݑ)ܦ 		௨೔∈௏(ீ)௨೔∈௏(ீ)            

= ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜ ௝))௕ݑ,
(ܩ)ܸ⊇{݆ݑ,݅ݑ}

																																																 

																= ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔
௨೔,௨ೕ∈ா(ீ)

+ ෍ (௜ݑ)݀)2 + ݀൫ݑ௝൯)௔
ௗ(௨೔,௨ೕ)ஹଶ;(ܩ)ܸ⊇{݆ݑ,݅ݑ}

						 

	+෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀൫ݑ௜ ௝൯ݑ, − 2)௕
ௗ(௨೔,௨ೕ)ஹଶ	;(ܩ)ܸ⊇{݆ݑ,݅ݑ}

																								 

																		≥ ෍ ଶ௔((௜ݑ)݀)
௣

௜ୀଵ
+ ෍ ݌)(௜ݑ)݀) − −(௜ݑ)݀ 1) + ݍ2) − (௜ݑ)݀ − ௜))௔ߤ(௜ݑ)݀

௣

௜ୀଵ
 

+෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀൫ݑ௜, ௝൯ݑ − 2)௕
ଵஸ௜ஸ௝ஸ௣;	ௗ(௨೔,௨ೕ)ஹଶ

.																											 

 
Since, we have (2ߜ)௔ ≤ (௜ݑ)݀)∑ + ݀൫ݑ௝൯)௔ ≤ (2∆)௔ 
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where    ݀(ݑ௜)ߤ௜ = ∑ ݀൫ݑ௝൯௨೔,௨ೕ∈ா(ீ) 													  
≥ ݌)ݍ4) −  																																																											௔((ܩ)ଵܯ−(1

∑) ௔((ܩ)ߜ2)+                             (݀൫ݑ௜, ௝൯ݑ − 2௨೔,௨ೕ∈௏(ீ);	ௗ(௨೔,௨ೕ)ஹଶ ∑ 1)௨೔,௨ೕ∈௏(ீ);	ௗ(௨೔,௨ೕ)ஹଶ
௕

, 
where ܯଵ(ܩ) = ∑ ଶ௣((௜ݑ)݀)

௜ୀଵ = ∑ ௜ߤ(௜ݑ)݀
௣
௜ୀଵ  

																										≥ ݌)ݍ4) − ௔((ܩ)ଵܯ−(1 + (ܩ)௔(2ܹ((ܩ)ߜ2) + ݍ − ݌)݌ − 1))௕. 
■ 

 
Proposition 2.1. Let	ܩ be the class of some standard graphs. Then, 

(i) ܦܦ(௔,௕)൫ܥ௣൯ = ൞
௔(4)݌2 ቀ൫௣

మିଵ൯
଼

ቁ
௕
݀݀݋	ݏ݅	݌	݂݅																																

௔(4)݌2 ቀ(௣ିଵ)మିଵ
଼

ቁ
௕

+ ௔(4)݌ ቀ௣
଼
ቁ
௕
݊݁ݒ݁	ݏ݅	݌	݂݅			

. 

(ii) ܦܦ(௔,௕)൫ܭ௣൯ = ݌)2௔݌ − 1)௔ାଵ. 
(iii) ܦܦ(௔,௕)൫ܭଵ,௣ିଵ൯ = ݌) − ݌))(1 − 2)2௔ା௕ +  .(௔݌2
(iv) ܦܦ(௔,௕)൫ ௣ܹ൯ ݌)2= − +݌))(1 2)௔) + 	6௔ + ݌) − 4)6௔2௕ିଵ. 

 
Proof. Let ܥ௣ be a cycle with ݌ ≥ 3. Then the degree of each vertex is ݀(ݑ) = 2 and the 

maximum distance that exists is ቔ௣
ଶ
ቕ.	Therefore, 

Case 1. If ݌ is odd, then there exists a ݌-number of degree partitions for all the 

distance. This implies that (ݑ)݀}݌ + {(ݒ)݀ ቄ1 + 2 + ⋯+ 		 ቔ௣
ଶ
ቕቅ. 

Therefore		ܦܦ(௔,௕)൫ܥ௣൯ = ቆ൫௣(4௔)݌
మିଵ൯್

଼
ቇ	follows. 

Case 2. If ݌ is even, then there exists a ݌-number of degree partitions for the 

distances up to (௣ିଶ)
ଶ

 and ௣
ଶ
-number of degree sum partitions for the distance. This is 

equivalent to (ݑ)݀}݌ + {(ݒ)݀ ቄ1 + 2 + ⋯+ 	 (௣ିଶ)
ଶ
ቅ + ௣

ଶ
(ݑ)݀} + {(ݒ)݀ ௣

ଶ
. Therefore 

௣൯ܥ൫(௔,௕)ܦܦ = (4௔)݌ ൬൫௣
మିଵ൯మିଵ

଼
൰
௕

+ 4௔ ቀ௣
ଶ
ቁ
௕ାଵ

. 

Let ܭ௣ be a complete graph with ݌ ≥ 3 vertices. Then the degree of each 

vertex is ݀(ݑ) = ݌) − 1) and only one distance exists. Thus, there are ௣(௣ିଵ)
ଶ

- 

number of degree partitions occur for the distance. This implies that  ௣(௣ିଵ)
ଶ

(ݑ)݀] +
  and hence	[(ݒ)݀
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௣൯ܭ൫(௔,௕)ܦܦ  = ௣(௣ିଵ)
ଶ

݌)] − 1) + ݌) − 1)]௔1௕ = ݌)2௔ିଵ݌ − 1)௔ାଵ. 

Let ܭଵ,௣ିଵ be a star with ݌ ≥ 3 vertices. Then there exists a (݌ − 1) – 

number of degree partition (1,݌ − 1)	for the distance one and (௣ିଵ)(௣ିଶ)
ଶ

 – number 
of degree partition (1,1) for the distance two. This implies that 

ଵ.௣ିଵ൯ܭ൫(௔,௕)ܦܦ  = ݌) − 1)(1 + ݌ − 1)௔ + 	 (௣ିଵ)(௣ିଶ)
ଶ

(1 + 1)௔2௕ 

						= ݌) − ௔݌(1 + ݌) − ݌)(1 − 2)2௔ା௕ିଵ. 

Let ௣ܹ  be a wheel with ݌ ≥ 4 vertices. Then the degree of the surrounded 
vertices are three and centre vertex is (݌ − 1) and maximum distance that exists is 
two. For the distance one, there are (݌ − 1)-number of surrounded degree partitions 
and (݌ − 1)-number of surrounded degrees with centre vertex degree. For the 
distance two, there are (௣ିଵ)(௣ିସ)

ଶ
-number of surrounded degree partitions. This 

implies that  

൫(௔,௕)ܦܦ ௣ܹ൯ = ݌) − 1)(3 + 3)௔ + ݌) − 1)(3 + ݌ − 1)௔ 

+
݌) − ݌)(1 − 4)

2 (3 + 3)௔2௕ 

																																																	= ݌) − 1)[6௔ + ݌) + 2)௔ + ݌) − 4)6௔2௕ିଵ.                 ■ 

The corona ܩଵ ∘  ଶ by taking oneܩ ଵ andܩ	ଶ is the graph obtained from the graphsܩ
copy of ܩଵ and |ܸ(ܩଵ)| copies of ܩଶ and then joining each vertex of the ith copy of ܩଶ 
named (ܩଶ, ݅), with the ith vertex of ܩଵ by an edge. 
 
Theorem 2.6. Let	ܩ ≅ ௣ଵܥ ∘ ଵ݌	with	௣ଶܭ ≥ 3 and ݌ଶ ≥ 1. Then, 

(ܩ)(௔,௕)ܦܦ = ൞
௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భ

ଶ
+ 2ቁ

௕
+ ଶ݌ଵ(2݌ + 4)௔ ቀ௣భ

ଶ
+ 1ቁ

௕
݀݀݋	ݏ݅	ଶ݌	݂݅			

௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భାଶ
ଶ
ቁ
௕

+ ଶ݌ଵ(2݌ + 4)௔ ቀ௣భାଵ
ଶ
ቁ
௕
݊݁ݒ݁	ݏ݅	ଶ݌	݂݅											

. 

 
Proof. Let ܩ ≅ ௣ଵܥ ∘ ଵ݌ with	௣ଶܭ ≥ 3	and	݌ଶ ≥ 1. Then,	݀(ݑ௜) = ଶ݌ + 2 for each 
vertex	ݑ௜ of cycle ܥ௣ଵ and ݀൫ݑ௝൯ =  .௣ଶܭ ௝ of complete graphݑ ଶ for each vertex݌

Case 1. For	݌ଶ	is odd, ݀(ݑ௜) = ௣భ
ଶ

+ 1 for each vertex ݑ௜ of cycle ܥ௣ଵ and ݀൫ݑ௝൯ =
௣భ
ଶ

+ 2 for each vertex ݑ௝ of complete graph 	ܭ௣ଶ. Then, 
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(ܩ)(௔,௕)ܦܦ = ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜ ௝))௕ݑ,
௨೔,௨ೕ∈௏(ீ)

 

																																							= ௔(ଶ݌2)ଶ݌ଵ݌ ቀ
ଵ݌
2 + 2ቁ

௕
+ ଶ݌)ଵ(2݌ + 2))௔ ቀ

ଵ݌
2 + 1ቁ

௕
	 

																																													= ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భ
ଶ

+ 2ቁ
௕

+ ଶ݌ଵ(2݌ + 4)௔ ቀ௣భାଶ
ଶ
ቁ
௕
. 

Case 2. For	݌ଶ	is odd, ݀(ݑ௜) = ௣భିଵ
ଶ

+ 1 for each vertex ݑ௜ of cycle ܥ௣ଵ and 

݀൫ݑ௝൯ = ௣భିଵ
ଶ

+ 2 for each vertex ݑ௝ of complete graph 	ܭ௣ଶ. Then, 

(ܩ)(௔,௕)ܦܦ										 = ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜, ௝))௕ݑ
௨೔,௨ೕ∈௏(ீ)

																		 

                                   		= ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భିଶ
ଶ

+ 2ቁ
௕

+ ଶ݌)ଵ(2݌ + 2))௔ ቀ௣భିଵ
ଶ

+ 1ቁ
௕
 

																																									= ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భାଶ
ଶ
ቁ
௕

+ ଶ݌ଵ(2݌ + 4)௔ ቀ௣భାଵ
ଶ
ቁ
௕
.                        

■ 
 

2.1 HARARY GRAPH 
 
In 1962, Harary introduced the Harary graph, an ݊ −connected graph with ݌ vertices of 

degree at least ݊ and	ቒ௡௣
ଶ
ቓ	edges. The construction of ܪ௡,௣	depends on the relationship 

between ݊ and ݌. Harary graph	ܪ௡ ,௣	with	1 < ݊ <  is constructed by placing equally ݌
spaced ݌ vertices on a circle and joining them as follows: 

Case 1. ݊ = 2݉	is even. By joining each vertex to its  ௡
ଶ
 neighbors in each 

directions around the circle ܪ௡,௣ can be formed. Therefore, vertices ቄ݅, ݅ + 1, … , ݅ +
௡
ଶൟ	and ቄ݅, ݅ − 1, … , ݅ − ௡

ଶ
ቅ	form clique in both the directions. 

Case 2.		݊ is odd and ݌	is even. Let ݊ = 2݉ + 1. Then ܪ௡,௣	is constructed by first 
drawing ܪଶ௠ ,௣ and then adding edges joining the vertices ݅	to ݅ + ௣

ଶ
;	1 ≤ ݅ ≤ ௣

ଶ
. 

Therefore, vertices between ݅	to ݅ + ௡
ଶ
	form a clique. 

Case 3.	݊ and ݌ both are odd. Let ݊ = 2݉ + 1. Then ܪ௡,௣ is constructed by first 

drawing ܪଶ௠ ,௣	and then adding edges joining vertex 0 to vertices ௣ିଵ
ଶ

 and ௣ାଵ
ଶ

, and 

vertex ݅	to ݅ + ௣ାଵ
ଶ

;	1 ≤ ݅ ≤ ௣
ଶ
. Therefore, the degree of 0 is ݊ + 1 while the degree 

of other vertices is ݊. For more details, see [15]. 

The Harary graphs and their matrices have important applications to the theory of 
designs and error-correcting codes. They are also, used as models for interconnection 
networks in telecommunication, VLSI designs, parallel, and distributed computing. 
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Theorem 2.7. Let	ܩ ≅ ݊	௡,௣ be a Harary graph withܪ ≥ 2݉;	݉ ≥ 1 and ݌ ≥ 4 and is 
even. Then, 

(i) ܦܦ(௔,௕)(ܩ) = ௔(4)݌2 ቀ(௣ିଵ)మିଵ
଼

ቁ
௕

+ ௔(4)݌ ቀ௣
଼
ቁ
௕
, if ݉ = 1. 

(ii) ܦܦ(௔,௕)(ܩ) = ݌)݌+௔(2݊)݌݊ − ݊ − 1)(2݊)௔(2)௕, if 	݊ = 2݉; 		݉ ≥ 2. 
 
Proof. Let ܩ ≅ ݊ ௡,௣ be a Harary graph withܪ ≥ 2݉; ݉ ≥ 1	and	݌ ≥ 4	and is even. Then, 

(i) If ݉ = 1, the Harary graph is a cycle and it is a 2-regular graph. The maximum 

distance of the graph is ቔ௣
ଶ
ቕ. The degree sequence will be (2, 2, … , 2) and the 

distance sequence will be ቀ1, 2, … , ቔ௣
ଶ
ቕቁ. Then the degree distance sequence will 

be 22)݌ + 2)൫1 + 2 + ⋯+ ݌) − 1)൯ + 2)݌ + 2) ௣
ଶ
. Therefore, 

(ܩ)(௔,௕)ܦܦ																											 = ௔(4)݌2 ቀ(௣ିଵ)మିଵ
଼

ቁ
௕

+ ௔(4)݌ ቀ௣
଼
ቁ
௕
. 

(ii) If ݊ = 2݉; 	݉ ≥ 2, the graph is ݎ −	regular and ݌ times of (݌ − ݊ − 1) vertices 
are at the maximum distance at 2 and all other vertices at the distance 1. Then,  
(ܩ)(௔,௕)ܦܦ																						 = ݌)݌+௔(2݊)݌݊ − ݊ − 1)(2݊)௔(2)௕. 

■ 
 
Theorem 2.8. Let	ܩ ≅ ݊	be a Harary graph with	௡,௣ܪ ≥ 2݉ + 1;	݉ ≥ 1 and ݌ ≥ 5 and is 
odd. Then, 

(ܩ)(௔,௕)ܦܦ																													 = ݌)݌+௔(2݊)݌݊ − ݊ − 1)(2݊)௔(2)௕. 
 
Proof. Let ܩ ≅ ݊ ௡,௣ be a Harary graph withܪ ≥ 2݉ + 1; ݉ ≥ 1	and	݌ ≥ 5	and is odd. 
Then, the graph is ݎ −	regular and ݌ times of (݌ − ݇ − 1)	vertices have the distance 2 and 
the remaining vertices have distance1. Therefore, 
(ܩ)(௔,௕)ܦܦ																													 = ݌)݌+௔(2݊)݌݊ − ݊ − 1)(2݊)௔(2)௕ .                                      ■                                                                             
 
3. THE SECOND GENERALIZED SCHULTZ (OR GUTMAN) INDEX 

For any positive real values ܽ and ܾ, the generalized second Schultz index is given by 

ܼܼ(௔,௕)(ܩ) = ∑ ,௜ݑ)݀)௔((௝ݑ)݀(௜ݑ)݀) (ீ)௝))௕{௨೔,௨ೕ}∈௏ݑ . 

Theorem 3.1. For any connected graph ܩ with	݌ ≥ 3, 
௣(௣ିଵ)

ଶ
௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ] ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣(௣ିଵ)

ଶ
 .௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)∆]

 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
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ଶ(ܩ)ߜ ≤ ௝൯ݑ൫݀.(௜ݑ)݀ ≤                                                                     (19)																										ଶ.(ܩ)∆
ଶ௔((ܩ)ߜ)																																				 ≤ ௔(௝൯ݑ൫݀.(௜ݑ)݀) ≤ ଶ௔((ܩ)∆) .	                                       (20)  

(ܩ)݀ܽݎ ≤ ݀൫ݑ௜, ௝൯ݑ ≤                                (21)                       																																.(ܩ)݀ܽݎ2
௕((ܩ)݀ܽݎ)																															 ≤ ,௜ݑ)݀) ௝))௕ݑ ≤ ௕((ܩ)݀ܽݎ2) .																			                         (22)  

Multiplying equations (20) and (22), we have 
௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ]			 ≤ ,௜ݑ)݀)௔(௝൯ݑ൫݀.(௜ݑ)݀) ௝))௕ݑ ≤ ௕[(ܩ)݀ܽݎ2]ଶ௔[(ܩ)∆] . 

				௣(௣ିଵ)
ଶ

௕[(ܩ)݀ܽݎ]ଶ௔[(ܩ)ߜ] ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣
ଶ

(p − 1)ଶ௔ାଵ[∆(ܩ)]ଶ௔2[(ܩ)݀ܽݎ]௕.  
■ 

Theorem 3.2. For any connected graph ܩ with ݌ ≥ 3, 
௣(௣ିଵ)

ଶ
௕[(ܩ)݀ܽݎ] ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣

ଶ
(p − 1)ଶ௔ାଵ[2(ܩ)݀ܽݎ]௕. 

 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
																																																																					1 ≤ (௜ݑ)݀ ≤ ݌ − 1.                                               (23)                             

                                        1≤ ௔(௝൯ݑ൫݀.(௜ݑ)݀) ≤ (p − 1)ଶ௔ .		                       (24)  
௕((ܩ)݀ܽݎ)					 ≤ ௕((௝ݑ,௜ݑ)݀) ≤ ௕((ܩ)݀ܽݎ2) .										                  (25)  

Multiplying equations (24) and (25), we have 
௕[(ܩ)݀ܽݎ] ≤ ,௜ݑ)݀)௔(௝൯ݑ൫݀(௜ݑ)݀) ௝))௕ݑ ≤ (p− 1)ଶ௔[2(ܩ)݀ܽݎ]௕ . 

											௣(௣ିଵ)
ଶ

௕[(ܩ)݀ܽݎ] ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣
ଶ

(p− 1)ଶ௔ାଵ[2(ܩ)݀ܽݎ]௕. 
■ 

 
Theorem 3.3. Let	ܩ be any connected graph with ݌ ≥ 3. Then, 

௣(௣ିଵ)
ଶ

≤ ܼܼ(௔,௕)(ܩ) ≤ ௣
ଶ

݌) − 1)௔ା௕ାଵ. 
 
Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
																																																1 ≤ ௔(௝൯ݑ൫݀.(௜ݑ)݀) ≤ (p − 1)ଶ௔,                                          (26)  
																																																1 ≤ ,௜ݑ)݀ (௝ݑ ≤ ݌ − 1,                                                            (27)  
																																																1 ≤ ௕((௝ݑ,௜ݑ)݀) ≤ ݌) − 1)௕.                                                  (28)  
Multiplying equations (26) and (28), we have 

																																													1 ≤ ,௜ݑ)݀)௔(௝൯ݑ൫݀.(௜ݑ)݀) ௝))௕ݑ ≤ (p − 1)௔(݌ − 1)௕, 
	௣(௣ିଵ)

ଶ
≤ ܼܼ(௔,௕)(ܩ) ≤ ௣

ଶ
݌) − 1)௔ା௕ାଵ. 

■ 
 
Theorem 3.4. For any connected graph ܩ with ݌ ≥ 3, 

௣(௣ିଵ)
ଶ

௔((ܩ)ߜ) ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣
ଶ

݌)ଶ௔((ܩ)∆) − 1)௕ାଵ. 
 



310                                                                                       BASHA, ASHA AND CHALUVARAJU 

 

Proof. Let ܩ be a connected graph with ݌ ≥ 3. We know that 
ଶ௔((ܩ)ߜ)								 ≤ ௔(௝൯ݑ൫݀.(௜ݑ)݀) ≤ ଶ௔(	(ܩ)∆) .																																	             (29)  

																																																1 ≤ ,௜ݑ)݀ (௝ݑ ≤ ݌ − 1.                                                            (30)  
1 ≤ ,௜ݑ)݀) ௝))௕ݑ ≤ ݌) − 1)௕ .                                                  (31)  

Multiplying equations (29) and (31), we have 
                        ௣(௣ିଵ)

ଶ
ଶ௔((ܩ)ߜ) ≤ ܼܼ(௔,௕)(ܩ) ≤ ௣

ଶ
݌)ଶ௔((ܩ)∆) − 1)௕ାଵ.                             ■ 

 
Proposition 3.1. Let	ܩ be the class of some standard graphs. Then, 

(i) 						ܼܼ(௔,௕)൫ܥ௣൯ = ൞
௔(4)݌2 ቀ൫௣

మିଵ൯
଼

ቁ
௕
݀݀݋	ݏ݅	݌	݂݅																																			

௔(4)݌2 ቀ(௣ିଵ)మିଵ
଼

ቁ
௕

+ ௔(4)݌ ቀ௣
ଶ
ቁ
௕
݊݁ݒ݁	ݏ݅	݌	݂݅					

. 

(ii) 						ܼܼ(௔,௕)൫ܭ௣൯ = ݌)݌ − 1)ଶ௔ାଵ. 
(iii) 						ܼܼ(௔,௕)൫ܭଵ,௣ିଵ൯ = ݌) − ݌))(1 − 2)2௕ + ݌)2 − 1)௔).        
(iv) 						ܼܼ(௔,௕)൫ ௣ܹ൯ ݌)2= − ݌3))(1 − 3)௔ + 	9௔ + ݌) − 4)9௔2௕ିଵ. 

Proof. Analogous version from Proposition 2.1 and definition of ܼܼ(௔,௕)(ܩ) we have the 
following results.                                                                                                                    ■ 

Theorem 3.5. Let ܩ ≅ ௣ଵܥ ∘ ଵ݌	with	௣ଶܭ ≥ 3 and ݌ଶ ≥ 1. Then, 

ܼܼ(௔,௕)(ܩ) = ൞
ଶ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భ

ଶ
+ 2ቁ

௕
+ ଶ݌)ଵ݌ + 2)௔ ቀ௣భ

ଶ
+ 1ቁ

௕
݀݀݋	ݏ݅	ଶ݌	݂݅

ଶ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భାଶ
ଶ
ቁ
௕

+ ଶ݌)ଵ݌ + 2)௔ ቀ௣భାଵ
ଶ
ቁ
௕
݊݁ݒ݁	ݏ݅	ଶ݌	݂݅									

. 

 
Proof. Let ܩ ≅ ௣ଵܥ ∘ ଵ݌ with	௣ଶܭ ≥ 3	and	݌ଶ ≥ 1. Then,	݀(ݑ௜) = ଶ݌ + 2 for each vertex 
௝൯ݑ௣ଵ and ݀൫ܥ ௜ of cycleݑ =  .௣ଶܭ ௝ of complete graphݑ ଶ for each vertex݌

Case 1. For	݌ଶ	is odd, ݀(ݑ௜) = ௣భ
ଶ

+ 1 for each vertex ݑ௜ of cycle ܥ௣ଵ and 	݀൫ݑ௝൯ =
௣భ
ଶ

+ 2 for each vertex ݑ௝ of complete graph 	ܭ௣ଶ. Then, 

							ܼܼ(௔,௕)(ܩ) = ෍ .(௜ݑ)݀) ݀൫ݑ௝൯)௔(݀(ݑ௜,ݑ௝))௕
௨೔,௨ೕ∈௏(ீ)

														 

																																= ଶ௔(ଶ݌2)ଶ݌ଵ݌ ቀ
ଵ݌
2 + 2ቁ

௕
+ ଶ݌)ଵ݌ + 2)ଶ௔ ቀ

ଵ݌
2 + 1ቁ

௕
 

																																											= ଶ௔(ଶ݌2)ଶ݌ଵ݌ ቀ
ଵ݌
2 + 2ቁ

௕
+ ଶ݌)ଵ݌ + 2)ଶ௔ ൬

ଵ݌ + 2
2 ൰

௕

.										 

Case 2. For	݌ଶ	is odd, ݀(ݑ௜) = ௣భିଵ
ଶ

+ 1 for each vertex ݑ௜ of cycle ܥ௣ଵ and 

݀൫ݑ௝൯ = ௣భିଵ
ଶ

+ 2 for each vertex ݑ௝ of complete graph 	ܭ௣ଶ. Then, 
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ܼܼ(௔,௕)(ܩ) = ෍ ,௜ݑ)݀)௔(௝൯ݑ൫݀.(௜ݑ)݀) ௝))௕ݑ
௨೔,௨ೕ∈௏(ீ)

																 

																																						= ଶ௔(ଶ݌2)ଶ݌ଵ݌ ൬
ଵ݌ − 2

2 + 2൰
௕

+ ଶ݌)ଵ݌ + 2)ଶ௔ ൬
ଵ݌ − 1

2 + 1൰
௕

 

																																							= ଶ௔(ଶ݌2)ଶ݌ଵ݌ ቀ௣భାଶ
ଶ
ቁ
௕

+ ଶ݌)ଵ݌ + 2)ଶ௔ ቀ௣భାଵ
ଶ
ቁ
௕
.                                     

■ 
 
Theorem 3.6. Let	ܩ ≅ ݊	௡,௣ be a Harary graph withܪ ≥ 2݉; ݉ ≥ 1 and ݌ ≥ 4 and is 
even. Then, 

(݅)								ܼܼ(௔,௕)(ܩ) = ௔(4)݌2 ቀ(௣ିଵ)మିଵ
଼

ቁ
௕

+ ௔(4)݌ ቀ௣
଼
ቁ
௕
, if 	݉ = 1. 

(݅݅)						ܼܼ(௔,௕)(ܩ) = ݌)݌+ଶ௔ାଵ(݊)݌ − ݊ − 1)(݊)ଶ௔(2)௕, if 	݊ = 2݉; 		݉ ≥ 2. 
 
Proof. By Theorem 2.8, the results (i) and (ii) follow.                                                         ■ 
 
Theorem 3.7. Let ܩ ≅ ݊	be a Harary graph with	௡,௣ܪ ≥ 2݉ + 1; ݉ ≥ 1 and ݌ ≥ 5 and is 
odd. Then, 

																													ܼܼ(௔,௕)(ܩ) = ݌)݌+ଶ௔ାଵ(݊)݌ − ݊ − 1)(݊)ଶ௔(2)௕. 
 
Proof. By Theorem 2.8, the claim follows.                                                         ■ 

Theorem 3.8. (Radon’s inequality) [13] For real numbers		ݐ > 0, ,ଵݔ ,ଶݔ … , ௦ݔ > 0,
ܽଵ, 	ܽଶ, … ,ܽ௦ > 0, then following inequality holds: 

∑ ௫೙೟శభ

௔೙೟
≥ (∑ ௫೙ೞ

೙సభ )೟శభ

(∑ ௔೙ೞ
೙సభ )೟

௦
௡ୀଵ . 

Now, we use the Radon's inequality to give the relation between	ܦܦ(௔,௕)(ܩ) and 
ܼܼ(௔,௕)(ܩ). 
 
Theorem 3.9. Let	ܩ be a connected graph with	݌ ≥ 3 and is odd. Then, 

(ܩ)(௔,௕)ܦܦ(ܩ)ߜ(ܩ)∆ ≤ ൫∆(ܩ) +  .௕((ܩ)ܹ)(ܩ)ܼܼ(௔,௕)	൯ଶ(ܩ)ߜ
 
Proof. Let each ݊ in Theorem 3.9 corresponds to the vertex pair ൫ݑ௜ ݏ with	௝൯ݑ, = ௣(௣ିଵ)

ଶ
 

and ݐ = 1. Then each ݔ௡ is replaced by (݀(ݑ௜) + ݀൫ݑ௝൯)௔(݀(ݑ௜,  ௝))௕ and ܽ௡ is replacedݑ
by (݀(ݑ௜).݀൫ݑ௝൯)௔(݀(ݑ௜,  ,௝))௕. Thusݑ
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(∑ (௜ݑ)݀) + ݀൫ݑ௝൯)௔(݀(ݑ௜, ௝))௕)௜ழ௝ݑ
ଶ

∑ .(௜ݑ)݀) ݀൫ݑ௝൯)௔(݀(ݑ௜,ݑ௝))௕௜ழ௝
≤෍

(௜ݑ)݀) + ݀൫ݑ௝൯)௔

௔(௝൯ݑ൫݀.(௜ݑ)݀)
௜ழ௝

௕((௝ݑ,௜ݑ)݀) ,																								 

																															
ଶ(ܩ)(௔,௕)ܦܦ

ܼܼ(௔,௕)(ܩ) ≤෍ቌඨ
(௜ݑ)݀
݀൫ݑ௝൯

+ ඨ݀
൫ݑ௝൯
(௜ݑ)݀

ቍ

ଶ

௜ழ௝

௕((௝ݑ,௜ݑ)݀) , 

																																			ቆට
ௗ(௨೔)
ௗ൫௨ೕ൯

+ ටௗ൫௨ೕ൯
ௗ(௨೔)

ቇ
ଶ

≤ ൫∆(ீ)ାఋ(ீ)൯మ

൫∆(ீ)ఋ(ீ)൯
. 

Therefore,       

																																																							஽஽(ೌ,್)(ீ)మ

௓௓(ೌ,್)(ீ)
≤ ൫∆(ீ)ାఋ(ீ)൯మ

൫∆(ீ)ఋ(ீ)൯
ቀ݀൫ݑ௜, ௝൯ቁݑ

௕
.                                   ■ 

 

4. THE FIRST GENERALIZED SCHULTZ POLYNOMIALS 

For any positive real number ܽ and ܾ, the first generalized Schultz polynomial of a graph ܩ 
is given by 

(ݔ,ܩ)(௔,௕)ܦܦ = ∑ (௜ݑ)݀) + ݀൫ݑ௝൯)௔௜ழ௝  ,್(ௗ(௨೔,௨ೕ))ݔ

where (݀(ݑ௜,  denotes (௜ݑ)݀ ௝))௕ denotes the distance between the pair of the vertices andݑ
the degree of the vertex ݑ௜. 
 
Observation 4.1.  

(i) The ܦܦ(௔,௕)(ݔ,ܩ) has no constant terms. 
(ii) Derivatives of the ܦܦ(௔,௕)(ܩ,  is the degree distance index of the graph at (ݔ

ݔ = 1. 
 

Observation 4.2. Let ܩ be the class of standard graphs. Then  

(i) ܦܦ(௔,௕)൫ܥ௣, ൯ݔ = (ସ௣)ೌ(ଵି௫ቀ
೛శమ
మ ቁ

್
)

ଵି௫
. 

(ii) ܦܦ(௔,௕)൫ܭ௣, ൯ݔ = ݌)݌2) − 1))௔ݔ. 

(iii) ܦܦ(௔,௕)൫ܭଵ,௣ିଵ, ൯ݔ = ൫݌)݌ − 1)൯௔ݔ + ቔ௣
ଶ
ቕ ݌) − ଶ್ݔ(1 . 

(iv) ܦܦ(௔,௕)൫ ଵܹ,௣ିଵ, ൯ݔ = ݌)2 − ݌))(1 − 2)௔ + 6௔)ݔ 

݌)2	+	 − 1)൫(݌ − 4)6௔൯ݔଶ್షభ.																					 
 

Theorem 4. 1. Let	ܩ ≅ ௣ଵܥ ∘ ଵ݌	with	௣ଶܭ ≥ 3 and ݌ଶ ≥ 2. Then, 
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(ݔ,ܩ)(௔,௕)ܦܦ =

⎩
⎪
⎨

⎪
ଶ(ଶ݌2)ଶ݌ଵ݌⎧ ൭ଵି௫

ቀ೛భమ శయቁ
್

ଵି௫
൱ + ଶ݌ଵ(2݌ + 4)௔ ൭ଵି௫

ቀ೛భమ శమቁ
್

ଵି௫
൱ ݊݁ݒ݁	ݏ݅	ଶ݌	݂݅	

௔(ଶ݌2)ଶ݌ଵ݌ ൭ଵି௫
ቀ೛భశరమ ቁ

್

ଵି௫
൱ + ଶ݌ଵ(2݌ + 4)௔ ቌଵି௫

ቀ೛భశయమ ቁ
್

ଵି௫
ቍ ݀݀݋	ݏ݅	ଶ݌	݂݅	

. 

 
Proof. Let ܩ ≅ ௣ଵܥ ∘ ଵ݌ with	௣ଶܭ ≥ 3	and	݌ଶ ≥ 2.Then,	݀(ݑ௜) = ଶ݌ + 2 for each vertex ݑ௜ 
of cycle ܥ௣ଵ and ݀(ݑ௜) = ଶ݌ + 2 for each vertex ݑ௝ of complete graph ܭ௣ଶ is ݀൫ݑ௝൯ =  .ଶ݌

Case 1. For		݌ଶ	is even, for each vertex	ݑ௜ of cycle the distance is ௣భ
ଶ

+ 1 and for 

each vertex ݑ௝ of complete graph 	ܭ௣ଶ the distance is ௣భ
ଶ

+ 2. Therefore, 

,ܩ)(௔,௕)ܦܦ	 (ݔ = ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔ݔ(ௗ(௨೔,௨ೕ))್ 							
௨೔,௨ೕ∈௏(ீ)

 

																																					= ෍ ௜ݔ௔(ଶ݌2)ଶ݌ଵ݌
೛భశమ
మ

௜ୀଵ
+ ෍ ଶ݌)ଵ(2݌ + 2))௔ݔ௜

೛భశభ
మ

௜ୀଵ
 

																																															= ଶ(ଶ݌2)ଶ݌ଵ݌ ൭ଵି௫
ቀ೛భమ శయቁ

್

ଵି௫
൱ + ଶ݌ଵ(2݌ + 4)௔ ൭ଵି௫

ቀ೛భమ శమቁ
್

ଵି௫
൱. 

 
Case 2. Suppose that ݌ଶ	is odd, then for each vertex ݑ௜ of cycle ܥ௣ଵ the distance is 
௣భିଵ
ଶ

+ 1 and for each vertex ݑ௝ of complete graph 	ܭ௣ଶ	the distance is  ௣భିଵ
ଶ

+ 2. 
Then, 

(ݔ,ܩ)(௔,௕)ܦܦ = ෍ ್(ௗ(௨೔,௨ೕ))ݔ௔(௝൯ݑ൫݀.(௜ݑ)݀)

௨೔,௨ೕ∈௏(ீ)
																						 

																																= ෍ ௜ݔ௔(ଶ݌2)ଶ݌ଵ݌
೛భషభ
మ ାଶ

௜ୀଵ
+ ෍ ଶ݌)ଵ(2݌ + 2))௔ݔ௜

೛భషభ
మ ାଶ

௜ୀଵ
 

																																			= ௔(ଶ݌2)ଶ݌ଵ݌ ൭ଵି௫
ቀ೛భశరమ ቁ

್

ଵି௫
൱ + ଶ݌ଵ(2݌ + 4)௔ ቌଵି௫

ቀ೛భశయమ ቁ
್

ଵି௫
ቍ. 

■ 
 
Theorem 4.2. Let ܩ ≅ ݊	௡,௣ be a Harary graph withܪ ≥ 2݉,	݉ ≥ 1 and ݌ ≥ 4 and is 
even. Then, 

(i) ܦܦ(௔,௕)൫ܪ௡,௣,ݔ൯ = ௔(4)݌2 ൭ଵି௫
ቀ೛శమమ ቁ

್

ଵି௫
൱, if ݉ = 1. 

(ii) ܦܦ(௔,௕)൫ܪ௡,௣,ݔ൯ = ݔ௔(2݊)݌݊ + ݌)݌ − ݊ − 1)(2݊)௔ݔଶ್, if	݊ = 2݉, ݉ ≥ 2. 
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Proof. (i) If ܪ௡,௣	is a 2-regular graph. The maximum distance of the graph is ቔ௣
ଶ
ቕ. The 

degree sequence will be (2, 2, … , 2). Therefore, 

(ݔ,ܩ)(௔,௕)ܦܦ				 = ෍ (௜ݑ)݀) + ݀൫ݑ௝൯)௔ݔ(ௗ(௨೔,௨ೕ))್

௨೔,௨ೕ∈௏(ீ)
 

																																																= ∑ ௜ݔ௔(4)݌2
೛
మ
௜ୀଵ = ௔(4)݌2 ൭ଵି௫

ቀ೛శమమ ቁ
್

ଵି௫
൱.     

 
 (ii) If ܪ௡,௣ is ݎ −	regular and ݌ times of (݌ − ݊ − 1) vertices are at the maximum 
distance at 2 and all other vertices at the distance 1. Then,  

,ܩ)(௔,௕)ܦܦ								 (ݔ = ෍ ್(ௗ(௨೔,௨ೕ))ݔ௔(௝൯ݑ൫݀(௜ݑ)݀)

௨೔,௨ೕ∈௏(ீ)
 

,௡,௣ܪ൫(௔,௕)ܦܦ																						 ൯ݔ = ݔ௔(2݊)݌݊ + ݌)݌ − ݊ − 1)(2݊)௔ݔଶ್. 
■ 

5. THE SECOND GENERALIZED SCHULTZ POLYNOMIALS 

For any positive real numbers ܽ and ܾ, the second Generalized Schultz (Gutman) 
polynomial of a graph ܩ is given by 

ܼܼ(௔,௕)(ܩ, (ݔ = ∑ ௔௜ழ௝(௝൯ݑ൫݀(௜ݑ)݀)  .್(ௗ(௨೔,௨ೕ))ݔ

where (݀(ݑ௜,  denotes (௜ݑ)݀ ௝))௕ denotes the distance between the pair of the vertices andݑ
the degree of the vertex ݑ௜. 
 
Observation 5.1.  

(i) The ܼܼ(௔,௕)(ݔ,ܩ) has no constant terms. 
(ii) Derivatives of the ܼܼ(௔,௕)(ܩ, ݔ is the degree distance index of the graph at (ݔ = 1. 

 
Observation 5.2. Let ܩ be the class of standard graphs. Then  

(i) ܼܼ(௔,௕)൫ܥ௣, ൯ݔ = (ସ௣)ೌ(ଵି௫ቀ
೛శమ
మ ቁ

್
)

ଵି௫
. 

(ii) ܼܼ(௔,௕)൫ܭ௣, ൯ݔ = ݌)݌ − 1)ଶ௔ݔ. 

(iii) ܼܼ(௔,௕)൫ܭଵ,௣ିଵ, ൯ݔ = ݌) − 1)ଶ௔ݔ + ൫௣ିଵଶ ൯ݔଶ್ . 

(iv) ܼܼ(௔,௕)൫ ଵܹ,௣ିଵ, ൯ݔ = ݌)2 − ݌3))(1 − 3)௔ + 9௔)ݔ + ݌)2 − ݌))(1 − 4)6௔)ݔଶ್షభ . 
 
Theorem 5. 1. Let ܩ ≅ ௣ଵܥ ∘ ଵ݌	with	௣ଶܭ ≥ 3 and ݌ଶ ≥ 2. Then, 
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ܼܼ(௔,௕)(ܩ, (ݔ =

⎩
⎪
⎨

⎪
ଶ௔(ଶ݌2)ଶ݌ଵ݌⎧ ൭ଵି௫

ቀ೛భమ శయቁ
್

ଵି௫
൱ + ଶ݌)ଵ݌ + 2)௔ ൭ଵି௫

ቀ೛భమ శమቁ
್

ଵି௫
൱ ݊݁ݒ݁	ݏ݅	ଶ݌	݂݅

ଶ௔(ଶ݌2)ଶ݌ଵ݌ ൭ଵି௫
ቀ೛భశరమ ቁ

್

ଵି௫
൱ + ଶ݌)ଵ݌ + 2)௔ ቌଵି௫

ቀ೛భశయమ ቁ
್

ଵି௫
ቍ ݀݀݋	ݏ݅	ଶ݌	݂݅

. 

 
Proof. By Theorem 4.1, the desired result follows.                                                               ■ 
 
Theorem 5.2. Let ܩ ≅ ݊	௡,௣ be a Harary graph withܪ ≥ 2݉.		݉ ≥ 1 and ݌ ≥ 4 and is 
even. Then, 

(i) ܼܼ(௔,௕)൫ܪ௡,௣, ൯ݔ = ௔(4)݌2 ൭ଵି௫
ቀ೛శమమ ቁ

್

ଵି௫
൱, if ݉ = 1. 

(ii) ܼܼ(௔,௕)൫ܪ௡,௣, ൯ݔ = ݔଶ௔ାଵ(݊)݌ + ݌)݌ − ݊ − 1)(݊)ଶ௔ݔଶ್ , ݂݅	݊ = 2݉; 	݉ ≥ 2. 
 
Proof. By Theorem 4.2, the desired result follows.                                                               ■ 
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