On Color Matrix and Energy of Semigraphs

Document Type : Review Article

Authors

1 Department of Mathematics, Basugaon College, P.O. Basugaon, 783372, India

2 Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia

3 Department of Mathematical Sciences, Bodoland University, P.O. Kokrajhar, 783370, India

Abstract

We introduce the concept of color matrix and color energy of semigraphs. The color energy is the sum of the absolute values of the eigenvalues of the color matrix. Some properties and bounds on color energy of semigraphs are established.

Keywords

Main Subjects


  1. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz. 103 (1978) 1-22.
  2. Adiga, E. Sampathkumar, M. A. Sriraj and A. S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 16 (3) (2013) 335-351.
  3. Sampathkumar and M. A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, J. Comb. Inf. Syst. Sci. 38 (2013) 113-120.
  4. B. Joshi and M. Joseph, Further results on color energy of graphs, Acta Univ. Sapientiae Inform. 9 (2) (2017) 119-131.
  5. B. Joshi and M. Joseph, On new bounds for color energy of graphs, Int. J. Pure Appl. Math. 117 (11) (2017) 25-33.
  6. Sampatkumar, Semigraphs and Their Applications, 1st ed. Academy of Discrete Mathematics and Application, India, 2019.
  7. S. Gaidhani, C. M. Deshpande and S. Pirzada, Energy of a semigraph, AKCE Int. J. Graphs Comb. 16 (1) (2019) 41-49.
  8. K. Nath, I. Gutman and A. Kumar Nandi, Distance Matrix and Energy of Semigraph, Bull. Int. Math. Virtual Inst. 11(3) (2021) 597-603.
  9. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
  10. K. Nath and A. Kumar Nandi, Adjacency matrix of signed semigraph, Adv. Appl. Discrete Math. 27 (2) (2021) 193-207.
  11. Rehman and I. C. F. Ipsen, Computing characteristic polynomials from eigenvalues, SIAM J. Matrix Anal. Appl. 32 (1) (2011) 90–114.
  12. Adiga, R Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (7) (2010) 1825-1835.