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1.  INTRODUCTION  

We denote the vertex set and the edge set of a graph 𝐺 by 𝑉(𝐺) and 𝐸(𝐺), respectively. The 
order of 𝐺 is the number of vertices of 𝐺. The degree of a vertex 𝑢, 𝑑𝑒𝑔 (𝑢), is the number 
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of edges incident with 𝑢. The distance 𝑑 (𝑢, 𝑣) between two vertices 𝑢 and 𝑣 is the number 
of edges in a shortest path between 𝑢 and 𝑣. The eccentricity 𝑒𝑐𝑐 (𝑢) of 𝑢 in 𝐺 is the distance 
between 𝑢 and a farthest vertex from 𝑢 in 𝐺. The distance between any two farthest vertices 
in 𝐺 is the diameter of 𝐺. A pendant vertex is a vertex of a graph having degree 1. 

A graph whose vertices can be partitioned into two (partite) sets 𝑉  and 𝑉 , such that 
no two vertices in the same set are adjacent is called a bipartite graph. A tree is a connected 
graph containing no cycles. The complete graph and the empty graph of order 𝑛 are denoted 

by 𝐾  and 𝐾 , respectively. For 𝑘 ≥ 2, let us denote by 𝐺 ⊕ 𝐺 ⊕ ⋯ ⊕ 𝐺  the graph 
obtained from graphs 𝐺 , 𝐺 , … , 𝐺  by joining every vertex of 𝐺  with every vertex of 𝐺 , 
where 𝑖 = 2,3, … , 𝑘. The graph 𝐺 ⊕ 𝐺  is called the join of two graphs 𝐺  and 𝐺 . For 𝑈 ⊆

𝑉(𝐺), an induced subgraph 𝐺[𝑈] of a graph 𝐺 consists of the vertices in 𝑈 and all the edges 
of 𝐺 connecting two vertices in 𝑈. 

Topological indices have been investigated due to their extensive applications, 
especially in chemistry. The general eccentric distance sum of a connected graph 𝐺 is defined 
as 𝐸𝐷𝑆 , (𝐺) = ∑ ∈ ( ) [𝑒𝑐𝑐 (𝑢)] [𝐷 (𝑢)] , where 𝐷 (𝑢) = ∑ ∈ ( ) 𝑑 (𝑢, 𝑣) and 𝑎, 𝑏 ∈

ℝ. 
We believe that it is important to study general topological indices. Then, results for 

particular topological indices are special cases of general results. Note that 𝐸𝐷𝑆 , (𝐺) =

𝐸𝐷𝑆(𝐺) is the classical eccentric distance sum of 𝐺, 𝐸𝐷𝑆 , (𝐺) is the total eccentricity index 

and 𝐸𝐷𝑆 , (𝐺) is the first Zagreb eccentricity index of 𝐺. So, those topological indices are 

special cases of the general eccentric distance sum. 
The classical eccentric distance sum 𝐸𝐷𝑆 belongs to the most well-known distance-

based topological indices. It has been widely studied. A lower bound on 𝐸𝐷𝑆 for trees with 
given order was presented in [9] and [20], a lower bound for trees with prescribed order and 
domination number was presented in [6] and trees were studied also in [14]. A lower bound 
on 𝐸𝐷𝑆 for graphs with prescribed order and vertex connectivity was given in [10], graph 
operations were investigated in [3], Sierpiński graphs in [4], graphs related to groups in [1], 
bipartite graphs in [5] and [12], cubic transitive graphs in [19], fullerances in [7], 
relationships with some other indices in [2] and [8], and exact values for several basic graphs 
were given in [13]. Some related distance-based indices were studied for example in [15] and 
[18]. First results on the general eccentric distance sum were given in [16]. 

We present some bounds on the general eccentric distance sum for general graphs, 
bipartite graphs and trees with given order and diameter 3, graphs with given order and 
domination number 2, and for the join of two graphs with given order and number of vertices 
having maximum possible degree. First, let us state two lemmas. Lemma 1 was given in [16] 
and it is used in the proofs of Theorems 2, 3 and 4. 

 
Lemma 1. Let 𝐺 be a connected graph with two non-adjacent vertices 𝑢 and 𝑣. For 𝑎 ≥ 0 
and 𝑏 > 0, we have  
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 𝐸𝐷𝑆 , (𝐺 + 𝑢𝑣) < 𝐸𝐷𝑆 , (𝐺). 

For 𝑎 ≤ 0 and 𝑏 < 0, we have  
 𝐸𝐷𝑆 , (𝐺 + 𝑢𝑣) > 𝐸𝐷𝑆 , (𝐺). 

 
The following lemma was given in [17] and it is used in the proofs of Theorems 4, 5, 

6 and 9. 
 

Lemma 2. Let 1 ≤ 𝑥 < 𝑦 and 𝑐 > 0. Then for 𝑏 > 1 and 𝑏 < 0,  
 (𝑥 + 𝑐) − 𝑥 < (𝑦 + 𝑐) − 𝑦 . 

If 0 < 𝑏 < 1, then  
 (𝑥 + 𝑐) − 𝑥 > (𝑦 + 𝑐) − 𝑦 . 

 

2.  RESULTS FOR GENERAL GRAPHS AND BIPARTITE GRAPHS 

 
Let us present bounds on 𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) for the join of two graphs 𝐺  and 𝐺  with given 

order and number of vertices having maximum possible degree. 
 

Theorem 1. For 𝑖 = 1,2, let 𝐺  be a graph of order 𝑛  with 𝑘  vertices of degree 𝑛 − 1. Let 
𝑎, 𝑏 ∈ ℝ. Then for 𝑏 > 0,  

𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) ≥ (𝑘 + 𝑘 )(𝑛 + 𝑛 − 1) + (𝑛 + 𝑛 − 𝑘 − 𝑘 )2 (𝑛 + 𝑛 ) , 

and for 𝑏 < 0,  
𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) ≤ (𝑘 + 𝑘 )(𝑛 + 𝑛 − 1) + (𝑛 + 𝑛 − 𝑘 − 𝑘 )2 (𝑛 + 𝑛 ) . 

The equalities hold if and only if 𝐺  contains 𝑛 − 𝑘  vertices of degree 𝑛 − 2, where 𝑛 −

𝑘  is even; 𝑖 = 1,2.  
 

Proof. For 𝑖 = 1,2, let us denote the set of vertices of degree 𝑛 − 1 in 𝑉(𝐺 ) by 𝑆 . We have 
|𝑉(𝐺 )| = 𝑛  and |𝑆 | = 𝑘 . Then 𝑒𝑐𝑐 ⊕ (𝑣) = 1 and 𝐷 ⊕ (𝑣) = 𝑛 + 𝑛 − 1 for 𝑣 ∈

𝑆 ∪ 𝑆 . For 𝑣 ∈ (𝑉(𝐺 )\𝑆 ) ∪ (𝑉(𝐺 )\𝑆 ), we get 𝑒𝑐𝑐 ⊕ (𝑣) = 2. For 𝑣 ∈ 𝑉(𝐺 )\𝑆 , 

we have  

𝐷 ⊕ (𝑣 ) = 𝑛 + 𝑑𝑒𝑔 (𝑣 ) + 2 𝑛 − 1 − 𝑑𝑒𝑔 (𝑣 )  

                                   = 𝑛 + 2𝑛 − 2 − 𝑑𝑒𝑔 (𝑣 ) 

                                   ≥ 𝑛 + 𝑛 , 
since 𝑑𝑒𝑔 (𝑣 ) ≤ 𝑛 − 2. Similarly, 𝐷 ⊕ (𝑣 ) ≥ 𝑛 + 𝑛  for 𝑣 ∈ 𝑉(𝐺 )\𝑆 . Thus, for 

𝑖 = 1,2, we obtain  
 [𝐷 ⊕ (𝑣 )] ≥ (𝑛 + 𝑛 ) , 

if 𝑏 > 0, and  
 [𝐷 ⊕ (𝑣 )] ≤ (𝑛 + 𝑛 ) , 
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if 𝑏 < 0. Consequently, for 𝑏 > 0, 𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) ≥ 𝑘 (𝑛 + 𝑛 − 1) + 𝑘 (𝑛 + 𝑛 −

1)  + (𝑛 − 𝑘 )2 (𝑛 + 𝑛 ) + (𝑛 − 𝑘 )2 (𝑛 + 𝑛 ) ,  
and for 𝑏 < 0, 𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) ≤ 𝑘 (𝑛 + 𝑛 − 1) + 𝑘 (𝑛 + 𝑛 − 1) + (𝑛 −

𝑘 )2 (𝑛 + 𝑛 ) + (𝑛 − 𝑘 )2 (𝑛 + 𝑛 ) . 
The equalities are achieved when 𝑑𝑒𝑔 (𝑣 ) = 𝑛 − 2 for every 𝑣 ∈ 𝑉(𝐺 )\𝑆 , 

where 𝑖 = 1,2. Note that 𝑛 − 𝑘  must be even, since for a graph with 𝑘  vertices of degree 
𝑛 − 1 and 𝑛 − 𝑘  vertices of degree 𝑛 − 2, from Handshaking lemma, we have 

              2|𝐸(𝐺 )| = ∑ ∈ ( ) 𝑑𝑒𝑔 (𝑣) 

                              = 𝑘 (𝑛 − 1) + (𝑛 − 𝑘 )(𝑛 − 2) 
                              = 𝑛 (𝑛 − 1) − (𝑛 − 𝑘 ). 

                                                                                                               ■ 
 
Now, we focus on graphs of diameter 3. In Theorems 2 and 3, we give bounds on 

𝐸𝐷𝑆 , (𝐺) for general graphs 𝐺. For 𝑎 = 𝑏 = 1, the graphs of given order and diameter with 

the smallest 𝐸𝐷𝑆 ,  were presented in [11].  

  
Theorem 2.  Let 𝐺 be a graph of order 𝑛 ≥ 4 and diameter 3. Then for 𝑎 ≥ 0 and 0 < 𝑏 <

1, we have  
 𝐸𝐷𝑆 , (𝐺) ≥ 3 [(𝑛 + 2) + (2𝑛 − 2) ] + 2 (𝑛 − 2)𝑛 , 

with equality if and only if 𝐺 is 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 .  
 

Proof. Suppose that 𝐺′ is a graph with the minimum 𝐸𝐷𝑆 ,  among graphs of order 𝑛 and 

diameter 3. Let 𝑢  and 𝑢  be any two vertices of distance 3 in 𝐺′. For 𝑖 = 0,1,2,3, let 𝑈 =

{𝑢 ∈ 𝑉(𝐺 ): 𝑑 (𝑢 , 𝑢) = 𝑖}. Then 𝑉(𝐺′) = 𝑈 ∪ 𝑈 ∪ 𝑈 ∪ 𝑈 . According to Lemma 1, 
adding an edge will decrease 𝐸𝐷𝑆 , . Thus, 𝐺′[𝑈 ∪ 𝑈 ] is a complete graph for 𝑖 = 1,2,3. 

Note that |𝑈 | = 1 (otherwise, if |𝑈 | ≥ 2, we can add edges to 𝐺′ to obtain 𝐺′′ with 𝐸(𝐺′′) =

𝐸(𝐺′) ∪ {𝑢𝑢 : 𝑢 ∈ 𝑈 }, and by Lemma 1, 𝐸𝐷𝑆 , (𝐺′′) < 𝐸𝐷𝑆 , (𝐺′)). So, 𝐺′ has the form 

𝐺 = 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾  where 1 ≤ 𝑝 ≤ ⌊ ⌋ − 1. We have  

𝑒𝑐𝑐 (𝑢 ) = 𝑒𝑐𝑐 (𝑢 ) = 3, 𝐷 (𝑢 ) = 𝑛 + 𝑝 + 1    and  𝐷 (𝑢 ) = 2𝑛 − 𝑝 − 1. 

For all 𝑢 ∈ 𝑉(𝐺 )\{𝑢 , 𝑢 }, we have 𝑒𝑐𝑐 (𝑢) = 2 and 𝐷 (𝑢) = 𝑛. Thus  

 𝐸𝐷𝑆 , (𝐺 ) = 3 [(𝑛 + 𝑝 + 1) + (2𝑛 − 𝑝 − 1) ] + 2 (𝑛 − 2)𝑛 = 𝑓(𝑝). 

Then the derivative  
 𝑓′(𝑝) = 3 𝑏[(𝑛 + 𝑝 + 1) − (2𝑛 − 𝑝 − 1) ]. 

Since 0 < 𝑏 < 1, we have 𝑓′(𝑝) > 0 for 1 ≤ 𝑝 < ⌊ ⌋ − 1 and 𝑓′(𝑝) = 0 for 𝑝 = ⌊ ⌋ − 1. 

Thus, 𝑓(𝑝) is increasing for 1 ≤ 𝑝 ≤ ⌊ ⌋ − 1 and 0 < 𝑏 < 1. So, 𝐸𝐷𝑆 , (𝐺 ) <

𝐸𝐷𝑆 , (𝐺 ), where 2 ≤ 𝑝 ≤ ⌊ ⌋ − 1. Hence 𝐺′ is 𝐺 = 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾  and  
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 𝐸𝐷𝑆 , (𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 ) = 3 [(𝑛 + 2) + (2𝑛 − 2) ] + 2 (𝑛 − 2)𝑛 .     ■ 

 
Theorem 3. Let 𝐺 be a graph of order 𝑛 ≥ 4 and diameter 3. Then for 𝑎 ≤ 0 and 𝑏 < 0, we 
have  

 𝐸𝐷𝑆 , (𝐺) ≤ 3 [(𝑛 + 2) + (2𝑛 − 2) ] + 2 (𝑛 − 2)𝑛 , 

with equality if and only if 𝐺 is 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 .  
 

Proof. We present only those parts which are different from the proof of Theorem 2. Suppose 
that 𝐺′ is a graph of order 𝑛 and diameter 3 with the maximum 𝐸𝐷𝑆 , . According to Lemma 

1, adding an edge will increase 𝐸𝐷𝑆 , . Thus 𝐺′[𝑈 ∪ 𝑈 ] is a complete graph for 𝑖 = 1,2,3. 

Note that |𝑈 | = 1 (otherwise, if |𝑈 | ≥ 2, we can add edges to 𝐺′ to obtain 𝐺′′ with 𝐸(𝐺′′) =

𝐸(𝐺′) ∪ {𝑢𝑢 : 𝑢 ∈ 𝑈 }, and by Lemma 1, 𝐸𝐷𝑆 , (𝐺′′) > 𝐸𝐷𝑆 , (𝐺′)). So, 𝐺′ has the form 

𝐺 = 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾  where 1 ≤ 𝑝 ≤ ⌊ ⌋ − 1. Since 𝑏 < 0, we have 𝑓′(𝑝) < 0 

for 1 ≤ 𝑝 < ⌊ ⌋ − 1 and 𝑓′(𝑝) = 0 for 𝑝 = ⌊ ⌋ − 1. Thus, 𝑓(𝑝) is decreasing for 1 ≤ 𝑝 ≤

⌊ ⌋ − 1 and 𝑏 < 0. So, 𝐸𝐷𝑆 , (𝐺 ) > 𝐸𝐷𝑆 , (𝐺 ), where 2 ≤ 𝑝 ≤ ⌊ ⌋ − 1. Hence 𝐺′ is 

𝐺 = 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 .                                                                                                                               ■ 
 
A sharp lower bound on 𝐸𝐷𝑆 , (𝐺) for bipartite graphs 𝐺 is given in Theorem 4. 

 
Theorem 4. Let 𝐺 be a bipartite graph of order 𝑛 ≥ 4 and diameter 3. Then for 𝑎 ≥ 0 and 
𝑏 ≥ 1, we have   

           𝐸𝐷𝑆 , (𝐺) ≥ 3 𝑛 + + 𝑛 +  

       + 2 − 1 𝑛 + − 2 + − 1 𝑛 + − 2 , 

with equality if and only if 𝐺 is 𝐾 ⊕ 𝐾⌈ ⌉ ⊕ 𝐾⌊ ⌋ ⊕ 𝐾 .  

Proof. Suppose that 𝐺′ is a graph with the minimum 𝐸𝐷𝑆 ,  among bipartite graphs of order 

𝑛 and diameter 3. Let 𝑢  and 𝑢  be any two vertices of distance 3 in 𝐺′. For 𝑖 = 0,1,2,3, let 
𝑈 = {𝑢 ∈ 𝑉(𝐺′): 𝑑 (𝑢 , 𝑢) = 𝑖}. Then 𝑉(𝐺′) = 𝑈 ∪ 𝑈 ∪ 𝑈 ∪ 𝑈 , where 𝑈 = {𝑢 }. The 
graph 𝐺′[𝑈 ] must be edgeless, otherwise 𝐺′ would have some cycle of odd length. According 
to Lemma 1, adding an edge will decrease 𝐸𝐷𝑆 , . Thus, 𝐺′[𝑈 ∪ 𝑈 ] is a complete 

bipartite graph for 𝑖 = 1,2,3. Note that |𝑈 | = 1 (otherwise, if |𝑈 | ≥ 2, we can add the edge 
𝑢 𝑢  to 𝐺′ to obtain 𝐺′′, so 𝐸𝐷𝑆 , (𝐺′′) < 𝐸𝐷𝑆 , (𝐺′), by Lemma 1). So, 𝐺′ has the form 

𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 , where 𝑛 + 𝑛 = 𝑛 − 2. 

Without loss of generality, assume that |𝑈 | ≥ |𝑈 |. We prove that |𝑈 | − |𝑈 | ≤ 1. 
Suppose to the contrary that |𝑈 | − |𝑈 | ≥ 2. We choose 𝑤 ∈ 𝑈 . Let 𝐺′′′ has the same 
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vertex set as 𝐺′ while 𝐸(𝐺′′′) = {𝑤𝑢: 𝑢 ∈ 𝑈 ∪ {𝑢 }} ∪ 𝐸(𝐺′)\{𝑤𝑢: 𝑢 ∈ {𝑢 } ∪ 𝑈 }. So, 𝐺′′′ 

is the graph 𝐾 ⊕ 𝐾 ⊕ 𝐾 ⊕ 𝐾 . 

For all 𝑢 ∈ 𝑉(𝐺′), we get 𝑒𝑐𝑐 (𝑢) = 𝑒𝑐𝑐 (𝑢). We have  
 𝐷 (𝑤) = 2|𝑈 | + |𝑈 | + 1    and  𝐷 (𝑤) = |𝑈 | + 2|𝑈 | + 2. 

Since |𝑈 | − |𝑈 | ≥ 2, we obtain 𝐷 (𝑤) − 𝐷 (𝑤) > 0. Thus  
 [𝑒𝑐𝑐 (𝑤)] [𝐷 (𝑤)] − [𝑒𝑐𝑐 (𝑤)] [𝐷 (𝑤)] > 0. 

We obtain  
 𝐷 (𝑢 ) = |𝑈 | + 2|𝑈 | + 1,   𝐷 (𝑢 ) = |𝑈 | + 2|𝑈 | + 2, 
 𝐷 (𝑢 ) = 2|𝑈 | + |𝑈 | + 1, 𝐷 (𝑢 ) = 2|𝑈 | + |𝑈 |, 
   𝐷 (𝑢) = 2|𝑈 | + |𝑈 | + 1,   𝐷 (𝑢) = 2|𝑈 | + |𝑈 |, 
   𝐷 (𝑣) = |𝑈 | + 2|𝑈 | + 1,   𝐷 (𝑣) = |𝑈 | + 2|𝑈 | + 2, 

where 𝑢 ∈ 𝑈 \{𝑤} and 𝑣 ∈ 𝑈 . Note that  
 𝑒𝑐𝑐 (𝑢) = 𝑒𝑐𝑐 (𝑣) = 2    and    𝑒𝑐𝑐 (𝑢 ) = 𝑒𝑐𝑐 (𝑢 ) = 3. 

Then  
𝐸𝐷𝑆 , (𝐺 ) − 𝐸𝐷𝑆 , (𝐺 ) = [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

                  + [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 
                         + ∑ ∈ [𝑒𝑐𝑐 (𝑣)] ([𝐷 (𝑣)] − [𝐷 (𝑣)] ) 

                                  + ∑ ∈ \{ } [𝑒𝑐𝑐 (𝑢)] ([𝐷 (𝑢)] − [𝐷 (𝑢)] ) 

                       + [𝑒𝑐𝑐 (𝑤)] ([𝐷 (𝑤)] − [𝐷 (𝑤)] ) 

                      > 3 ([𝐷 (𝑢 )] − [𝐷 (𝑢 ) + 1]  

                                  + [𝐷 (𝑢 )] − [𝐷 (𝑢 ) − 1] ) 
                      + 2 [|𝑈 |([𝐷 (𝑣)] − [𝐷 (𝑣) + 1] ) 

                                  + (|𝑈 | − 1)([𝐷 (𝑢)] − [𝐷 (𝑢) − 1] )] 
                       > 3 ([𝐷 (𝑢 )] − [𝐷 (𝑢 ) + 1] + [𝐷 (𝑢 )]  

                                  − [𝐷 (𝑢 ) − 1] ) + 2 |𝑈 |([𝐷 (𝑣)] − [𝐷 (𝑣) + 1]  

                                  + [𝐷 (𝑢)] − [𝐷 (𝑢) − 1] ) ≥ 0, 
because for 𝑏 = 1,  

 [𝐷 (𝑢 )] − [𝐷 (𝑢 ) + 1] + [𝐷 (𝑢 )] − [𝐷 (𝑢 ) − 1] = 0, 
and  

 [𝐷 (𝑣)] − [𝐷 (𝑣) + 1] + [𝐷 (𝑢)] − [𝐷 (𝑢) − 1] = 0, 
and for 𝑏 > 1, by Lemma 2,  

 [𝐷 (𝑢 )] − [𝐷 (𝑢 ) − 1] > [𝐷 (𝑢 ) + 1] − [𝐷 (𝑢 )]  
and  

 [𝐷 (𝑢)] − [𝐷 (𝑢) − 1] > [𝐷 (𝑣) + 1] − [𝐷 (𝑣)] , 
since 𝐷 (𝑢 ) > 𝐷 (𝑢 ) + 1 and 𝐷 (𝑢) > 𝐷 (𝑣) + 1. Thus 𝐸𝐷𝑆 , (𝐺′) > 𝐸𝐷𝑆 , (𝐺′′′) 

for 𝑎 ≥ 0 and 𝑏 ≥ 1, a contradiction. So, |𝑈 | − |𝑈 | ≤ 1. Hence 𝐺′ is 𝐾 ⊕ 𝐾⌈ ⌉ ⊕

𝐾⌊ ⌋ ⊕ 𝐾  and  
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 𝐸𝐷𝑆 , (𝐺′) = 3 𝑛 + + 𝑛 +  

                     + 2 − 1 𝑛 + − 2 + − 1 𝑛 + − 2 , 

 

3.  RESULTS FOR TREES 

For integers 𝑙 ≥ 2 and 𝑛 ≥ 𝑛 ≥ 1, 𝑃 (𝑛 , 𝑛 ) is a tree obtained from the path 𝑃  by joining 
one end vertex of 𝑃  to 𝑛  new vertices and the other end vertex of 𝑃  to 𝑛  pendant vertices; 
see Figure 1. The tree 𝑃 (𝑛 , 𝑛 ) has 𝑛 + 𝑛  pendant vertices. 

 

 
Figure 1: Tree 𝑃 (𝑛 , 𝑛 ). 

  
In Theorems 5 and 6, we compare 𝐸𝐷𝑆 ,  of these trees if 𝑙 and the order are fixed. 

Theorem 5 is used in the proofs of Theorems 7 and 10. For 𝑎 = 𝑏 = 1, the following theorem 
was presented in [6]. 

 

Theorem 5. Let 2 ≤ 𝑙 ≤ 𝑛 − 2. For 𝑎, 𝑏 ∈ ℝ, where 0 < 𝑏 ≤ 1,  

𝐸𝐷𝑆 , 𝑃 (1, 𝑛 − 𝑙 − 1) < 𝐸𝐷𝑆 , 𝑃 (2, 𝑛 − 𝑙 − 2) < ⋯          

                                                                  < 𝐸𝐷𝑆 , 𝑃 , . 

 
Proof. In the tree 𝑇 = 𝑃 (𝑛 , 𝑛 ), where 𝑛 ≥ 𝑛 ≥ 2, let 𝑢 𝑢 … 𝑢  be the path which does 
not contain pendant vertices of 𝑃 (𝑛 , 𝑛 ). We denote the pendant vertices adjacent to 𝑢  by 
𝑣 , 𝑣 , … , 𝑣  and the pendant vertices adjacent to 𝑢  by 𝑣′ , 𝑣′ , … , 𝑣′ . 

Let 𝑉(𝑇 ) = 𝑉(𝑇 ) and 𝐸(𝑇 ) = {𝑢 𝑣′ } ∪ 𝐸(𝑇 )\{𝑢 𝑣′ }. Note that 𝑇  is the tree 

𝑃 (𝑛 + 1, 𝑛 − 1). To prove Theorem 5, it suffices to show that 𝐸𝐷𝑆 , (𝑇 ) < 𝐸𝐷𝑆 , (𝑇 ). 

For any 𝑣 ∈ 𝑉(𝑇 ), we obtain 𝑒𝑐𝑐 (𝑣) = 𝑒𝑐𝑐 (𝑣). Note that for 𝑖 = 1,2, … , ⌊ ⌋,  

 𝑒𝑐𝑐 (𝑢 ) = 𝑒𝑐𝑐 (𝑢 ) = 𝑙 + 1 − 𝑖,    and    𝑒𝑐𝑐 (𝑣) = 𝑙 + 1 

for all the pendant vertices 𝑣 ∈ 𝑉(𝑇 ). 
For 𝑗 = 1,2, … , 𝑛  and 𝑘 = 1,2, … , 𝑛 − 1,   
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 in 𝑇 , there are 𝑛 − 1 pendant vertices of distance 2 from 𝑣  and 𝑛  pendant 

vertices of distance 𝑙 + 1 from 𝑣 ,  

 in 𝑇 , there are 𝑛  pendant vertices of distance 2 from 𝑣  and 𝑛 − 1 pendant 

vertices of distance 𝑙 + 1 from 𝑣 ,  

 in 𝑇 , there are 𝑛 − 1 pendant vertices of distance 2 from 𝑣′  and 𝑛  pendant 
vertices of distance 𝑙 + 1 from 𝑣′ ,  

 in 𝑇 , there are 𝑛 − 2 pendant vertices of distance 2 from 𝑣′  and 𝑛 + 1 pendant 
vertices of distance 𝑙 + 1 from 𝑣′ ,  

thus  
 𝐷 (𝑣 ) < 𝐷 (𝑣 ) ≤ 𝐷 (𝑣′ ) < 𝐷 (𝑣′ ), (1) 

where  
 𝐷 (𝑣 ) − 𝐷 (𝑣 ) = 𝐷 (𝑣′ ) − 𝐷 (𝑣′ ) = 𝑙 − 1. (2) 

Similarly,  
 𝐷 (𝑣′ ) < 𝐷 (𝑣′ ),    𝑡ℎ𝑢𝑠  [𝐷 (𝑣′ )] < [𝐷 (𝑣′ )]  (3) 

for 0 < 𝑏 ≤ 1. 

For 𝑖 = 1,2, … , ⌊ ⌋,   

 in 𝑇 , there are 𝑛  pendant vertices of distance 𝑖 from 𝑢  and 𝑛  pendant vertices 
of distance 𝑙 + 1 − 𝑖 from 𝑢 ,  

 in 𝑇 , there are 𝑛 + 1 pendant vertices of distance 𝑖 from 𝑢  and 𝑛 − 1 
pendant vertices of distance 𝑙 + 1 − 𝑖 from 𝑢 ,  

 in 𝑇 , there are 𝑛  pendant vertices of distance 𝑖 from 𝑢  and 𝑛  pendant 
vertices of distance 𝑙 + 1 − 𝑖 from 𝑢 ,  

 in 𝑇 , there are 𝑛 − 1 pendant vertices of distance 𝑖 from 𝑢  and 𝑛 + 1 
pendant vertices of distance 𝑙 + 1 − 𝑖 from 𝑢 ,  

thus  
 𝐷 (𝑢 ) < 𝐷 (𝑢 ) ≤ 𝐷 (𝑢 ) < 𝐷 (𝑢 ), (4) 

where  
 𝐷 (𝑢 ) − 𝐷 (𝑢 ) = 𝐷 (𝑢 ) − 𝐷 (𝑢 ) = 𝑙 + 1 − 2𝑖. (5) 

Note that if 𝑙 is odd, then 𝐷 (𝑢 ) = 𝐷 (𝑢 ). 

We have  
 𝐸𝐷𝑆 , (𝑇 ) − 𝐸𝐷𝑆 , (𝑇 ) = ∑ ∈ ( ) [𝑒𝑐𝑐 (𝑣)] ([𝐷 (𝑣)] − [𝐷 (𝑣)] ) 

                    = ∑ [𝑒𝑐𝑐 (𝑣 )] ([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) 

                       + ∑ [𝑒𝑐𝑐 (𝑣′ )] ([𝐷 (𝑣′ )] − [𝐷 (𝑣′ )] ) 

                       + ∑ [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ). 

By (2) and (3),  
 ∑ [𝑒𝑐𝑐 (𝑣 )] ([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) + ∑ [𝑒𝑐𝑐 (𝑣′ )] ([𝐷 (𝑣′ )] − [𝐷 (𝑣′ )] ) 
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= (𝑙 + 1) [𝑛 ([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) 

+ (𝑛 − 1)([𝐷 (𝑣′ )] − [𝐷 (𝑣′ )] ) + [𝐷 (𝑣′ )] − [𝐷 (𝑣′ )] ] 

> (𝑙 + 1) [𝑛 ([𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] ) + (𝑛 − 1)([𝐷 (𝑣 )]  

− [𝐷 (𝑣′ ) + 𝑙 − 1] )] 

> (𝑙 + 1) (𝑛 − 1)([𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] + [𝐷 (𝑣 )]  

− [𝐷 (𝑣′ ) + 𝑙 − 1] )  ≥ 0, 

since (𝑙 + 1) > 0, for 𝑏 = 1,  
 [𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] + [𝐷 (𝑣′ )] − [𝐷 (𝑣′ ) + 𝑙 − 1] = 0, 

and for 0 < 𝑏 < 1, by (1) and Lemma 2,  
 [𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] > [𝐷 (𝑣′ ) + 𝑙 − 1] − [𝐷 (𝑣′ )] . 

By (5),  

 ∑ [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

 = ∑
⌊ ⌋

[𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

 + [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

 = ∑
⌊ ⌋

(𝑙 + 1 − 𝑖) ([𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )]  

 + [𝐷 (𝑢 )] − [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] ) ≥ 0, 

 since (𝑙 + 1 − 𝑖) > 0, for 𝑏 = 1, [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )] + [𝐷 (𝑢 )]  

−[𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] = 0, and for 0 < 𝑏 < 1, by (4) and Lemma 2,  

 [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )] > [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )] . 

Hence 𝐸𝐷𝑆 , (𝑇 ) − 𝐸𝐷𝑆 , (𝑇 ) > 0.                                                                                                              ■ 

 
Theorem 6 is used in the proof of Theorem 8. 
 

Theorem 6. Let 2 ≤ 𝑙 ≤ 𝑛 − 2. For 𝑎, 𝑏 ∈ ℝ, where 𝑏 < 0,  

𝐸𝐷𝑆 , 𝑃 (1, 𝑛 − 𝑙 − 1) > 𝐸𝐷𝑆 , 𝑃 (2, 𝑛 − 𝑙 − 2) > ⋯ 

                                                                    > 𝐸𝐷𝑆 , 𝑃 , . 

 
Proof. We present those parts of the proof of Theorem 6, which differ from the proof of 
Theorem 5. We show that 𝐸𝐷𝑆 , (𝑇 ) < 𝐸𝐷𝑆 , (𝑇 ), where 𝑇 = 𝑃 (𝑛 , 𝑛 ), 𝑇 = 𝑃 (𝑛 +

1, 𝑛 − 1) and 𝑛 ≥ 𝑛 ≥ 2, 
For 𝑗 = 1,2, … , 𝑛  and 𝑘 = 1,2, … , 𝑛 − 1, we have  
 𝐷 (𝑣 ) < 𝐷 (𝑣 ) ≤ 𝐷 (𝑣′ ) < 𝐷 (𝑣′ ), (6) 

where  
 𝐷 (𝑣 ) − 𝐷 (𝑣 ) = 𝐷 (𝑣′ ) − 𝐷 (𝑣′ ) = 𝑙 − 1. (7) 

Similarly,  
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 𝐷 (𝑣′ ) < 𝐷 (𝑣′ ),    so    [𝐷 (𝑣′ )] > [𝐷 (𝑣′ )]  (8) 

for 𝑏 < 0. 

For 𝑖 = 1,2, … , ⌊ ⌋, we have  

 𝐷 (𝑢 ) < 𝐷 (𝑢 ) ≤ 𝐷 (𝑢 ) < 𝐷 (𝑢 ), (9) 

where  
 𝐷 (𝑢 ) − 𝐷 (𝑢 ) = 𝐷 (𝑢 ) − 𝐷 (𝑢 ) = 𝑙 + 1 − 2𝑖. (10) 

 By (7) and (8),  
 ∑ [𝑒𝑐𝑐 (𝑣 )] ([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) + ∑ [𝑒𝑐𝑐 (𝑣′ )] ([𝐷 (𝑣′ )] − [𝐷 (𝑣′ )] ) 

= (𝑙 + 1) [𝑛 ([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) 

+ (𝑛 − 1)([𝐷 (𝑣 )] − [𝐷 (𝑣 )] ) + [𝐷 (𝑣 )] − [𝐷 (𝑣 )] ] 

< (𝑙 + 1) [𝑛 ([𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] ) 

+ (𝑛 − 1)([𝐷 (𝑣 )] − [𝐷 (𝑣 ) + 𝑙 − 1] )] 

< (𝑙 + 1) (𝑛 − 1)([𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )]  

+ [𝐷 (𝑣′ )] − [𝐷 (𝑣′ ) + 𝑙 − 1] ) < 0, 

 since (𝑙 + 1) > 0 and by (6) and Lemma 2, for 𝑏 < 0,  
[𝐷 (𝑣 ) + 𝑙 − 1] − [𝐷 (𝑣 )] < [𝐷 (𝑣′ ) + 𝑙 − 1] − [𝐷 (𝑣′ )] . 

By (10),   

 ∑ [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

 = ∑
⌊ ⌋

[𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] )  

 + [𝑒𝑐𝑐 (𝑢 )] ([𝐷 (𝑢 )] − [𝐷 (𝑢 )] ) 

 = ∑
⌊ ⌋

(𝑙 + 1 − 𝑖) ([𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )]  

 + [𝐷 (𝑢 )] − [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] ) < 0, 

 since (𝑙 + 1 − 𝑖) > 0 and for 𝑏 < 0, by (9) and Lemma 2,  
 [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )] < [𝐷 (𝑢 ) + 𝑙 + 1 − 2𝑖] − [𝐷 (𝑢 )] . 

Hence 𝐸𝐷𝑆 , (𝑇 ) − 𝐸𝐷𝑆 , (𝑇 ) < 0.                                                                                                              ■ 

 
Let us present sharp bounds on 𝐸𝐷𝑆 , (𝑇) for trees 𝑇 of given order and diameter 3. 

 
Theorem 7. Let 𝑇 be a tree of order 𝑛 ≥ 4 and diameter 3. Let 𝑎, 𝑏 ∈ ℝ where 0 < 𝑏 ≤ 1. 
Then  

 𝐸𝐷𝑆 , 𝑃 (𝑛 − 3,1) ≤ 𝐸𝐷𝑆 , (𝑇) ≤ 𝐸𝐷𝑆 , 𝑃 − 1, − 1 , 

with equalities if and only if 𝑇 is 𝑃 (𝑛 − 3,1) and 𝑃 ( − 1, − 1), respectively.  
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Proof. Every tree of order 𝑛 and diameter 3 has the form 𝑃 (𝑛 − 𝑘, 𝑘), where 1 ≤ 𝑘 ≤ ⌊ ⌋. 

For 0 < 𝑏 ≤ 1, by Theorem 5, 𝑃 (𝑛 − 3,1) and 𝑃 ( − 1, − 1) are the unique trees with 

the smallest and largest 𝐸𝐷𝑆 , , respectively.  

 
Similarly, using Theorem 6, we obtain the following bounds for negative 𝑏. 
 

Theorem 8. Let 𝑇 be a tree of order 𝑛 ≥ 4 and diameter 3. Let 𝑎, 𝑏 ∈ ℝ where 𝑏 < 0. Then  

 𝐸𝐷𝑆 , 𝑃 − 1, − 1 ≤ 𝐸𝐷𝑆 , (𝑇) ≤ 𝐸𝐷𝑆 , 𝑃 (𝑛 − 3,1) , 

with equalities if and only if 𝑇 is 𝑃 ( − 1, − 1) and 𝑃 (𝑛 − 3,1), respectively.  

 

We present the values of 𝐸𝐷𝑆 , (𝑃 (𝑛 − 3,1)) and 𝐸𝐷𝑆 , (𝑃 ( − 1, − 1)). 

We have  
𝐸𝐷𝑆 , (𝑃 (𝑛 − 3,1)) = 3 [(𝑛 − 3)(2𝑛 − 2) + (3𝑛 − 6) ] + 2 [(2𝑛 − 4) + 𝑛 ] 

and  

𝐸𝐷𝑆 , 𝑃 − 1, − 1  = 3 − 1 2𝑛 + − 4 + − 1 2𝑛 + − 4  

                         + 2 𝑛 + − 2 + 𝑛 + − 2 . 

 
Let us compare 𝐸𝐷𝑆 ,  of 𝑃 (𝑛 , 𝑛 ) and 𝑃 (𝑛 − 1, 𝑛 ), which are trees having 

the same order, but different number of pendant vertices (and different diameter). Theorem 
9 is used in the proof of Theorem 10. 

 
Theorem 9. Let 𝑙 ≥ 2, 𝑛 ≥ 2 and 𝑛 ≥ 1, where 𝑛 ≥ 𝑛 . Then for 𝑎 ≥ 0 and 𝑏 ≥ 1,  

 𝐸𝐷𝑆 , (𝑃 (𝑛 , 𝑛 )) < 𝐸𝐷𝑆 , (𝑃 (𝑛 − 1, 𝑛 )). 

 
Proof. In the tree 𝑇 = 𝑃 (𝑛 , 𝑛 ), let 𝑢 𝑢 … 𝑢  be the path which does not contain pendant 
vertices of 𝑃 (𝑛 , 𝑛 ). We denote the pendant vertices adjacent to 𝑢  by 𝑣 , 𝑣 , … , 𝑣  and 

the pendant vertices adjacent to 𝑢  by 𝑣′ , 𝑣′ , … , 𝑣′ . Let 𝑉(𝑇 ) = 𝑉(𝑇 ) and 𝐸(𝑇 ) =

𝑣 𝑣 , 𝑣 𝑣 , … , 𝑣 𝑣 ∪ 𝐸(𝑇 )\{𝑢 𝑣 , 𝑢 𝑣 , … , 𝑢 𝑣 }. Note that 𝑇  is the tree 𝑃 (𝑛 −

1, 𝑛 ). For any 𝑣 ∈ 𝑉(𝑇 ), we obtain 𝑒𝑐𝑐 (𝑣) ≥ 𝑒𝑐𝑐 (𝑣). For any 𝑣 ∈ 𝑉(𝑇 )\{𝑣 }, we 

have 𝐷 (𝑣) > 𝐷 (𝑣), thus for 𝑎 ≥ 0 and 𝑏 ≥ 1,  

 [𝑒𝑐𝑐 (𝑣)] [𝐷 (𝑣)] > [𝑒𝑐𝑐 (𝑣)] [𝐷 (𝑣)] . 

For 𝑣 , we get 𝐷 (𝑣 ) = 𝐷 (𝑣 ) − 𝑛 + 1. 

We use 𝑣  and 𝑣′  to compare 𝐸𝐷𝑆 , (𝑇 ) and 𝐸𝐷𝑆 , (𝑇 ). For 𝑣′ , we have 

𝐷 (𝑣′ ) = 𝐷 (𝑣′ ) + 𝑛 − 1. Since 𝑛 ≥ 𝑛 , we obtain 𝐷 (𝑣′ ) ≥ 𝐷 (𝑣 ). Note that  
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 𝑒𝑐𝑐 (𝑣 ) = 𝑒𝑐𝑐 (𝑣 ) = 𝑒𝑐𝑐 (𝑣′ ) = 𝑙 + 1    and    𝑒𝑐𝑐 (𝑣′ ) = 𝑙 + 2. 

We obtain  
𝐸𝐷𝑆 , (𝑇 ) − 𝐸𝐷𝑆 , (𝑇 ) > [𝑒𝑐𝑐 (𝑣 )] [𝐷 (𝑣 )] − [𝑒𝑐𝑐 (𝑣 )] [𝐷 (𝑣 )]  

                    + [𝑒𝑐𝑐 (𝑣′ )] [𝐷 (𝑣′ )] − [𝑒𝑐𝑐 (𝑣′ )] [𝐷 (𝑣′ )]  

                   = (𝑙 + 2) [𝐷 (𝑣 ) − 𝑛 + 1] − (𝑙 + 1) [𝐷 (𝑣 )]  

                     + (𝑙 + 1) [𝐷 (𝑣′ ) + 𝑛 − 1] − (𝑙 + 1) [𝐷 (𝑣′ )]  

                   > (𝑙 + 1) ([𝐷 (𝑣 ) − 𝑛 + 1] − [𝐷 (𝑣 )]  

                               + [𝐷 (𝑣′ ) + 𝑛 − 1] − [𝐷 (𝑣′ )] )  ≥ 0, 

because for 𝑏 = 1,  
 [𝐷 (𝑣 ) − 𝑛 + 1] − [𝐷 (𝑣 )] + [𝐷 (𝑣′ ) + 𝑛 − 1] − [𝐷 (𝑣′ )] = 0, 

and for 𝑏 > 1, by Lemma 2,  
 [𝐷 (𝑣′ ) + 𝑛 − 1] − [𝐷 (𝑣′ )] > [𝐷 (𝑣 )] − [𝐷 (𝑣 ) − 𝑛 + 1] , 

since 𝐷 (𝑣′ ) ≥ 𝐷 (𝑣 ) > 𝐷 (𝑣 ) − 𝑛 + 1. Hence, 𝐸𝐷𝑆 , (𝑇 ) > 𝐸𝐷𝑆 , (𝑇 ).  

 
A dominating set in a graph 𝐺 is a set Γ ⊆ 𝑉(𝐺) such that every vertex not in Γ is 

adjacent to a vertex in Γ. The cardinality of a smallest dominating set is the domination 
number of 𝐺. Let us give an upper bound on 𝐸𝐷𝑆 , (𝑇) for trees 𝑇 with given order and 

domination number 2 if 𝑏 = 1. For 𝑎 = 𝑏 = 1, the tree of given order and domination 
number 2 having the largest 𝐸𝐷𝑆 ,  was given in [6]. 

 
Theorem 10. Let 𝑇 be a tree of order 𝑛 ≥ 6 and domination number 2. Then for 𝑎 ≥ 0,  

 𝐸𝐷𝑆 , (𝑇) ≤ 2𝑛 + 6 − 20𝑛 + 24 5 + (5𝑛 − 8)4 + (5𝑛 − 12)3 , 

with equality if and only if 𝑇 is 𝑃 (⌈ ⌉, ⌊ ⌋).  

 
Proof. Any tree of order 𝑛 and domination number 2 has the form 𝑃 (𝑛 , 𝑛 ), where 2 ≤ 𝑙 ≤

4 and 𝑙 + 𝑛 + 𝑛 = 𝑛. By Theorem 5, a tree with the largest 𝐸𝐷𝑆 ,  among trees of order 𝑛 

and domination number 2 is 𝑃 (⌈ ⌉, ⌊ ⌋) or 𝑃 (⌈ ⌉, ⌊ ⌋) or 𝑃 (⌈ ⌉, ⌊ ⌋). By 

Theorem 9,  

  𝐸𝐷𝑆 , 𝑃 , < 𝐸𝐷𝑆 , 𝑃 ,  

                                                     < 𝐸𝐷𝑆 , 𝑃 , , 

thus 𝑃 (⌈ ⌉, ⌊ ⌋) = 𝑃 (⌈ ⌉ − 2, ⌊ ⌋ − 2) is the tree with the largest 𝐸𝐷𝑆 ,  among trees 

of order 𝑛 and domination number 2. We have 𝐸𝐷𝑆 , 𝑃 − 2, − 2 = 2𝑛 +

6 − 20𝑛 + 24 5 + (5𝑛 − 8)4 + (5𝑛 − 12)3 .                                                                            ■ 
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4.  OPEN PROBLEMS 

Let us state several problems open for further research. In Theorem 1, we presented bounds 
on 𝐸𝐷𝑆 , (𝐺 ⊕ 𝐺 ) for the join of two graphs 𝐺  and 𝐺 . We suggest studying other graph 

products. 
 

Problem 1. Study 𝐸𝐷𝑆 ,  for the Cartesian product, tensor product or lexicographic product 

of two graphs.  
 
In Theorems 2, 3, 4, 7 and 8, we obtained bounds on 𝐸𝐷𝑆 ,  for general graphs (for 

𝑎 ≥ 0, 0 < 𝑏 < 1 and 𝑎 ≤ 0, 𝑏 < 0), bipartite graphs (for 𝑎 ≥ 0, 𝑏 ≥ 1) and trees (for 𝑎 ∈

ℝ, 0 < 𝑏 ≤ 1 and 𝑎 ∈ ℝ, 𝑏 < 0) of diameter 3. We recommend studying graphs of larger 
diameters. 

 
Problem 2. Find upper or lower bounds on 𝐸𝐷𝑆 , (𝐺) for trees, bipartite graphs or general 

graphs 𝐺 with given order and diameter greater than 3.  
 
In Theorem 10, we presented an upper bound on 𝐸𝐷𝑆 , (𝑇) of trees 𝑇 only for 

domination number 2 and 𝑏 = 1. We suggest studying related problems if both 𝑎 and 𝑏 are 
general. 
 
Problem 3. Find upper or lower bounds on 𝐸𝐷𝑆 , (𝐺) for trees or graphs 𝐺 with given 

order and domination number, where both 𝑎 and 𝑏 are general.  
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