Iranian Journal of
Mathematical Chemistry
Journal homepage: ijmc.kashanu.ac.ir

Maximum Variable Connectivity Index of n-Vertex Trees

Shamaila Yousaf ${ }^{\mathbf{1 , 2 , \bullet}}$ And AKhlaq Ahmad Bhatti ${ }^{1}$
${ }^{1}$ Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan
${ }^{2}$ Department of Mathematics, University of Gujrat, Gujrat, Pakistan

ARTICLE INFO

Article History:

Received: 5 September 2022
Accepted: 25 March 2022
Published online: 30 March 2022
Academic Editor: Boris Furtula

Keywords:

Chemical graph theory
Variable connectivity index
Variable Randić index
Trees
Extremal problem

Abstract

In QSAR and QSPR studies the most commonly used topological index was proposed by chemist Milan Randić in 1975 called Randić branching index or path-one molecular connectivity index, 1χ and it has many applications. In the extension of connectivity indices, in early 1990s, chemist Milan Randic' introduced variable Randić index defined as $$
\sum_{v_{1} v_{2} \in E(G)}\left(\left(\mathrm{d}_{v_{1}}+\vartheta_{*}\right)\left(\mathrm{d}_{v_{2}}+\vartheta_{*}\right)\right)^{-1 / 2}
$$ where ϑ_{*} is a non-negative real number and $d_{v_{1}}$ is the degree of vertex v_{1} in G. The main objective of the present study is to prove the conjecture proposed in [19]. In this study, we will show that the P_{n} (path graph) has the maximum variable connectivity index among the collection of trees whose order is n, where $n \geq 4$.

© 2022 University of Kashan Press. All rights reserved

1. Introduction

In the present study, graphs under discussion are connected, finite, without loops and undirected. The number of vertices and number of edges in a graph $G=(V, E)$ are defined as order and size, respectively. A vertex adjacent to a vertex t is called neighbor of

[^0]$t \in V(G)$ and $N(t)$ represents the collection of all neighbor vertices of $t . N(t)$ is called degree of the vertex $t \in G$ and we denote it by d_{t}. The vertex t is said to be pendent vertex or a leaf if $d_{t}=1$. n-vertex graph means a graph whose order is $n . P_{n}$ and S_{n} are well-known n-vertex path graph and the n-vertex star graph, respectively. T_{n} presents the collection of all n-vertex trees. For the relevant (chemical graph theoretical) symbols and undefined terms in this study, we suggest the reader to relevant book, as [8].

The variable Randić index [15, 14], introduced by Randić, for the graph H is defined as:

$$
{ }^{1} \chi^{f}(H)={ }^{v} \mathrm{R}_{\vartheta_{*}}(H)=\sum_{v_{i} v_{j} \in E(H)} \frac{1}{\sqrt{\left(\mathrm{~d}_{v_{i}}+\vartheta_{*}\right)\left(\mathrm{d}_{v_{j}}+\vartheta_{*}\right)}},
$$

where $d_{v_{1}}$ is the degree of vertex v_{1} in H and ϑ_{*} is a non-negative real number.Clearly, the topological index ${ }^{v} \mathrm{R}_{\vartheta_{*}}(G)$ is the classical Randić index if we consider $\vartheta_{*}=0[16,17]$. Detailed chemical properties of the variable Randić index can be seen in $[11,12,13,16,6$, $18,19]$ and related references therein. It is important to mention that the invariant ${ }^{v} \mathrm{R}_{\vartheta_{*}}$ has more chemical applications than the various popular variable indices $[3,9,10,4,7,5,2,1]$.

Conjecture 1.1. [19] For $n \geq 4$ and $\gamma \geq 0$, among all trees of a fixed order n, path graph P_{n} is the unique tree with maximum variable Randić index ${ }^{v} \mathrm{R}_{\gamma}$, which is

$$
\frac{2}{\sqrt{(1+\gamma)(2+\gamma)}}+\frac{n-3}{2+\gamma} .
$$

Since trees are important molecular structures in chemistry, in the following we only deal with trees i.e. connected graphs without cycles. Recently, Yousaf et al. [19] determined the graph with maximum ${ }^{v} \mathrm{R}_{\vartheta_{*}}$ value among all the class of trees is path and thereby confirmed the Conjecture 1.1. We prove the Conjecture 1.1 by determining that the path graph P_{n} has the maximum variable Randić index among the collection of trees of a fixed order n, where $n \geq 4$.

2. Main Results

To establish the main results, we prove some lemmas first. A vertex of graph is said to be a claw if all of its neighbors, except one, are leaves.

Theorem 2.1. [19] For $n \geq 4$ and $\gamma \geq 0$, among all trees of a fixed order n, star graph S_{n} is the unique tree with minimum variable Randić index ${ }^{\nu} R_{\gamma}$, which is

$$
\frac{n-1}{\sqrt{(n-1+\gamma)(1+\gamma)}} .
$$

Lemma 2.1. For $\vartheta_{*} \geq 0$, it holds that

$$
\Phi\left(3, s, \vartheta_{*}\right)=\frac{1}{\sqrt{3+\vartheta_{*}}}\left(\frac{1}{\sqrt{1+\vartheta_{*}}}+\frac{1}{\sqrt{3+\vartheta_{*}}}\right)-\frac{2}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}<0 .
$$

Proof. Since $\Phi\left(3, s, \vartheta_{*}\right)=\frac{1}{\sqrt{3+\vartheta_{*}}}\left(\frac{1}{\sqrt{1+\vartheta_{*}}}+\frac{1}{\sqrt{3+\vartheta_{*}}}\right)-\frac{2}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}$,

$$
\begin{aligned}
\Phi\left(3, s, \vartheta_{*}\right) & =\frac{1}{\left(2+\vartheta_{*}\right) \sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}\left(\frac{1}{\left(2+\vartheta_{*}\right)+\sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}-\frac{\sqrt{1+\vartheta_{*}}}{\sqrt{3+\vartheta_{*}}}\right) \\
& =\frac{1}{\left(2+\vartheta_{*}\right) \sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}\left(\frac{\sqrt{3+\vartheta_{*}}-\vartheta_{*} \sqrt{1+\vartheta_{*}}-2 \sqrt{1+\vartheta_{*}}-\left(1+\vartheta_{*}\right) \sqrt{3+\vartheta_{*}}}{\sqrt{3+\vartheta_{*}}\left\{\left(2+\vartheta_{*}\right)+\sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}\right\}}\right) \\
& =\frac{1}{\left(2+\vartheta_{*}\right) \sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}\left(\frac{-\vartheta_{*} \sqrt{1+\vartheta_{*}}-2 \sqrt{1+\vartheta_{*}}-\vartheta_{*} \sqrt{3+\vartheta_{*}}}{\sqrt{3+\vartheta_{*}}\left\{\left(2+\vartheta_{*}\right)+\sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}\right\}}\right)<0,
\end{aligned}
$$

proving the lemma.

Lemma 2.2. If $\vartheta_{*} \geq 0$ and $r \geq 3$ then the function Ψ defined as

$$
\Psi\left(\vartheta_{*}, r\right)=4\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}-4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-(r-1)\left(2 r-1+2 \vartheta_{*}\right)
$$ gives positive real numbers.

Proof. Let $\Psi\left(\vartheta_{*}, r\right)=4\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}-4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-$ $(r-1)\left(2 r-1+2 \vartheta_{*}\right)$. We have to show that $\Psi\left(\vartheta_{*}, r\right)>0$ implies that

$$
4\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}-4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-(r-1)\left(2 r-1+2 \vartheta_{*}\right)>0
$$

which can be rewritten as

$$
16\left(r+\vartheta_{*}\right)^{3}\left(r-1+\vartheta_{*}\right)^{3}-\left\{4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-(r-1)\left(2 r-1+2 \vartheta_{*}\right)\right\}^{2}>0 .
$$

Let

$$
\begin{aligned}
\Psi_{1}\left(\vartheta_{*}, r\right) & =16\left(r+\vartheta_{*}\right)^{3}\left(r-1+\vartheta_{*}\right)^{3} \\
& -\left(4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-(r-1)\left(2 r-1+2 \vartheta_{*}\right)\right)^{2} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\Psi_{1}\left(\vartheta_{*}, r\right) & =16 r^{4} \vartheta_{*}+64 r^{3} \vartheta_{*}^{2}+96 r^{2} \vartheta_{*}^{3}+64 r \vartheta_{*}^{4}+16 \vartheta_{*}^{5}+4 r^{4} \\
& -16 r^{3} \vartheta_{*}-76 r^{2} \vartheta_{*}^{2}-88 r \vartheta_{*}^{3}-32 \vartheta_{*}^{4}-12 r^{3}-20 r^{2} \vartheta_{*}+8 \vartheta_{*}^{3} \\
& +11 r^{2}+24 r \vartheta_{*}+12 \vartheta_{*}^{2}-2 r-4 \vartheta_{*}-1 . \\
& =(r-1)^{2}\{4 r(r-1)-1\}+4 \vartheta_{*}^{2}(r-1)\left(16 r^{2}-3 r-3\right) \\
& +8 r \vartheta_{*}^{3}(12 r-11)+4 r^{2} \vartheta_{*}\left\{(2 r-1)^{2}-6\right\}+4 \vartheta_{*}(6 r-1) \\
& +16 \vartheta_{*}^{5}+8 \vartheta_{*}^{3}>0 .
\end{aligned}
$$

Hence the lemma is proved.

Lemma 2.3. If $\vartheta_{*} \geq 0$ and $r \geq 3$, then the function Θ_{1} defined as

$$
\Theta_{1}\left(\vartheta_{*}, r\right)=2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}-\frac{r-1}{r-1+\vartheta_{*}}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}}
$$

gives positive real numbers.
Proof. Let $\Theta_{1}\left(\vartheta_{*}, r\right)=2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}-\frac{r-1}{r-1+\vartheta_{*}}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}}$. Then,

$$
\begin{aligned}
\Theta_{1}\left(\vartheta_{*} r\right) & =\frac{2\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}}{\left(r-1+\vartheta_{*}\right)^{2}}+2\left(r+\vartheta_{*}\right)-\frac{r-1}{r-1+\vartheta_{*}}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}} \\
& =\frac{4\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}-4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-4(r-1)\left(2 r-1+2 \vartheta_{*}\right)}{2\left(r-1+\vartheta_{*}\right)^{2}} \\
& =\frac{1}{2\left(r-1+\vartheta_{*}\right)^{2}}\left[\Psi\left(\vartheta_{*}, r\right)\right]>0,
\end{aligned}
$$

where $\quad \Psi\left(\vartheta_{*}, r\right)=4\left(r+\vartheta_{*}\right)^{3 / 2}\left(r-1+\vartheta_{*}\right)^{3 / 2}-4\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)^{2}-4(r-1)\left(2 r-1+2 \vartheta_{*}\right)$. Now by Lemma 2.2, one can see that $\Psi\left(\vartheta_{*}, r\right)>0$.

Lemma 2.4. If $\vartheta_{*} \geq 0$ and $r, s \geq 3$, then the function Θ_{2} defined as $\Theta_{2}\left(\vartheta_{*}, r, s\right)=1-$ $\frac{r-1}{2\left(r-1+\vartheta_{*}\right)}-\frac{s-1}{2\left(s-1+\vartheta_{*}\right)}$ gives non-negative real numbers.

Proof. Note that $\Theta_{2}\left(\vartheta_{*}, r, s\right)=1-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)}-\frac{s-1}{2\left(s-1+\vartheta_{*}\right)} \Theta_{2}\left(\vartheta_{*}, r, s\right)=\frac{\vartheta_{*}\left(r+s-2+2 \vartheta_{*}\right)}{2\left(r-1+\vartheta_{*}\right)\left(s-1+\vartheta_{*}\right)}$ ≥ 0, proving the lemma.

Lemma 2.5. If $\vartheta_{*} \geq 0$ and $r, s \geq 3$, then the function g defined as

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) & =2 \sqrt{s-1+\vartheta_{*}}\left\{\sqrt{r+\vartheta_{*}}-\sqrt{r-1+\vartheta_{*}}\right\} \\
& +(r-1) \sqrt{s-1+\vartheta_{*}}\left\{\frac{\sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}-\frac{\sqrt{r+\vartheta_{*}}}{r-1+\vartheta_{*}}\right\} \\
& -\frac{(s-1) \sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}\left\{\sqrt{s+\vartheta_{*}}-\sqrt{s-1+\vartheta_{*}}\right\} \\
& +\frac{1}{r+\vartheta_{*}}\left\{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}\right\},
\end{aligned}
$$

is positive-valued.

Proof. Let

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) & =2 \sqrt{s-1+\vartheta_{*}}\left\{\sqrt{r+\vartheta_{*}}-\sqrt{r-1+\vartheta_{*}}\right\} \\
& +(r-1) \sqrt{s-1+\vartheta_{*}}\left\{\frac{\sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}-\frac{\sqrt{r+\vartheta_{*}}}{r-1+\vartheta_{*}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{(s-1) \sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}\left\{\sqrt{s+\vartheta_{*}}-\sqrt{s-1+\vartheta_{*}}\right\} \\
& +\frac{1}{r+\vartheta_{*}}\left\{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}\right\} .
\end{aligned}
$$

Then, one can see that

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right)= & \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}+(r-1)\left\{1-\left(\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}\right)^{3 / 2}\right\}-\right. \\
& \left.(s-1)\left\{\sqrt{\frac{s+\vartheta_{*}}{s-1+\vartheta_{*}}}-1\right\}+1\right] . \\
= & \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}+(r-1)\left\{1-\left(1+\frac{1}{r-1+\vartheta_{*}}\right)(1+\right.\right. \\
& \left.\left.\left.\frac{1}{r-1+\vartheta_{*}}\right)^{1 / 2}\right\}-(s-1)\left\{\sqrt{1+\frac{1}{s-1+\vartheta_{*}}}-1\right\}+1\right] .
\end{aligned}
$$

Since $\sqrt{1+\frac{1}{r-1+\vartheta_{*}}} \leq 1+\frac{1}{2\left(r-1+\vartheta_{*}\right)}$,

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) \geq & \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}+(r-1)\left\{1-\left(1+\frac{1}{r-1+\vartheta_{*}}\right)(1+\right.\right. \\
& \left.\left.\left.\frac{1}{2\left(r-1+\vartheta_{*}\right)}\right)\right\}-(s-1)\left\{1+\frac{1}{2\left(s-1+\vartheta_{*}\right)}-1\right\}+1\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) \geq & \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}-\frac{3(r-1)}{2\left(r-1+\vartheta_{*}\right)}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}}-\right. \\
& \left.\frac{s-1}{2\left(s-1+\vartheta_{*}\right)}+1\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) \geq & \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}-\frac{r-1}{r-1+\vartheta_{*}}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)}-\right. \\
& \left.\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}}-\frac{s-1}{2\left(s-1+\vartheta_{*}\right)}+1\right]
\end{aligned}
$$

which implies that $g\left(r, s, \vartheta_{*}\right) \geq \frac{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}}{r+\vartheta_{*}}\left[\Theta_{1}\left(r, \vartheta_{*}\right)+\Theta_{2}\left(r, s, \vartheta_{*}\right)\right]>0$, where $\Theta_{1}\left(\vartheta_{*}, r\right)$ and $\Theta_{2}\left(r, s, \vartheta_{*}\right)$ are defined as follows:

$$
\Theta_{2}\left(\vartheta_{*}, r, s\right)=1-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)}-\frac{s-1}{2\left(s-1+\vartheta_{*}\right)},
$$

and

$$
\Theta_{1}\left(\vartheta_{*}, r\right)=2\left(r+\vartheta_{*}\right)\left\{\sqrt{\frac{r+\vartheta_{*}}{r-1+\vartheta_{*}}}-1\right\}-\frac{r-1}{r-1+\vartheta_{*}}-\frac{r-1}{2\left(r-1+\vartheta_{*}\right)^{2}} .
$$

There quantities are greater than or equal to zero by Lemma 2.3 and Lemma 2.4.

Lemma 2.6. If $\vartheta_{*} \geq 0$ and $r, s \geq 3$, then the function h defined as

$$
\begin{aligned}
h\left(r, s, \vartheta_{*}\right) & =\frac{r-1}{\sqrt{s+\vartheta_{*}}}\left(\frac{1}{\sqrt{r-1+\vartheta_{*}}}-\frac{1}{\sqrt{r+\vartheta_{*}}}\right)+\frac{s-1}{\sqrt{r+\vartheta_{*}}}\left(\frac{1}{\sqrt{s-1+\vartheta_{*}}}-\frac{1}{\sqrt{s+\vartheta_{*}}}\right) \\
& -\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}+\frac{3}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{2}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}
\end{aligned}
$$

is positive-valued.

Proof. Let

$$
\begin{aligned}
h\left(r, s, \vartheta_{*}\right) & =\frac{r-1}{\sqrt{s+\vartheta_{*}}}\left(\frac{1}{\sqrt{r-1+\vartheta_{*}}}-\frac{1}{\sqrt{r+\vartheta_{*}}}\right)+\frac{s-1}{\sqrt{r+\vartheta_{*}}}\left(\frac{1}{\sqrt{s-1+\vartheta_{*}}}-\frac{1}{\sqrt{s+\vartheta_{*}}}\right)-\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}} \\
& +\frac{3}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{2}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} .
\end{aligned}
$$

We compute the partial derivative to prove the desired inequality.

$$
\begin{aligned}
\frac{\partial h}{\partial r}= & \frac{1}{\sqrt{s+\vartheta_{*}}}\left(\frac{1}{\sqrt{r-1+\vartheta_{*}}}-\frac{1}{\sqrt{r+\vartheta_{*}}}\right)+\frac{r-1}{2 \sqrt{s+\vartheta_{*}}}\left(\frac{1}{\left(r+\vartheta_{*}\right)^{3 / 2}}-\frac{1}{\left(r-1+\vartheta_{*}\right)^{3 / 2}}\right) \\
- & \frac{s-1}{2\left(r+\vartheta_{*}\right)^{3 / 2}}\left(\frac{1}{\sqrt{s-1+\vartheta_{*}}}+\frac{1}{\sqrt{s+\vartheta_{*}}}\right)+\frac{1}{2\left(r+\vartheta_{*}\right)^{3 / 2} \sqrt{\left(s+\vartheta_{*}\right)}} . \\
\frac{\partial h}{\partial r}= & \frac{1}{2 \sqrt{\left(s+\vartheta_{*}\right)\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)\left(s-1+\vartheta_{*}\right.}}\left[2 \sqrt{s-1+\vartheta_{*}}\left\{\sqrt{r+\vartheta_{*}}-\sqrt{r-1+\vartheta_{*}}\right\}+\right. \\
& (r-1) \sqrt{s-1+\vartheta_{*}}\left\{\frac{\sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}-\frac{\sqrt{r+\vartheta_{*}}}{r-1+\vartheta_{*}}\right\}-\frac{(s-1) \sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}\left\{\sqrt{s+\vartheta_{*}}-\sqrt{s-1+\vartheta_{*}}\right\}+ \\
& \left.\frac{1}{r+\vartheta_{*}}\left\{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}\right\}\right] . \\
\frac{\partial h}{\partial r}= & \frac{1}{2 \sqrt{\left(s+\vartheta_{*}\right)\left(r+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)\left(s-1+\vartheta_{*}\right)}}\left[g\left(r, s, \vartheta_{*}\right],\right.
\end{aligned}
$$

where

$$
\begin{aligned}
g\left(r, s, \vartheta_{*}\right) & =2 \sqrt{s-1+\vartheta_{*}}\left\{\sqrt{r+\vartheta_{*}}-\sqrt{r-1+\vartheta_{*}}\right\} \\
& +(r-1) \sqrt{s-1+\vartheta_{*}}\left\{\frac{\sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}-\frac{\sqrt{r+\vartheta_{*}}}{r-1+\vartheta_{*}}\right\} \\
& -\frac{(s-1) \sqrt{r-1+\vartheta_{*}}}{r+\vartheta_{*}}\left\{\sqrt{s+\vartheta_{*}}-\sqrt{s-1+\vartheta_{*}}\right\} \\
& +\frac{1}{r+\vartheta_{*}}\left\{\sqrt{r-1+\vartheta_{*}} \sqrt{s-1+\vartheta_{*}}\right\} .
\end{aligned}
$$

Using Lemma 2.5 , one can see that $\frac{\partial h}{\partial r}>0$. Similarly $\frac{\partial h}{\partial s}>0$. Also, it can be easily investigated that $h(3,2)>h(2,2)=0$ which completes the proof.

Transformation 2.1. Let T be a tree of order $n \geq 4$ and $u_{1} \in V(T)$ is a claw such that $d\left(u_{1}\right)=r \geq 3$. Define $N\left(u_{1}\right)=\left\{u_{0}, u_{2}, v_{1}, v_{2}, \ldots, v_{r-2}\right\}$ such that $d\left(u_{0}\right)=1$ and
, $d\left(v_{i}\right)=1$, for each $\quad 1 \leq i \leq r-2 \quad$ and $\quad d\left(u_{2}\right)=q \geq 1$. Construct $\dot{T}=T-\left\{u_{0} u_{1}, u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{1} v_{r-2}\right\}+\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, u_{0} v_{r-2}, u_{0} u_{1}\right\}$.

Lemma 2.7. Let \hat{T} be a graph obtained from T by applying Transformation 2.1. Then for $\vartheta_{*} \geq 0,{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)<{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)$.

Proof. For $n=4$, there are only two trees namely S_{4} (star graph) and P_{4} (path graph), and hence the result follows from Theorem 2.1. In what follows, take $n \geq 5$. Since $d\left(u_{1}\right)=$ $r \geq 3$. Let $N\left(u_{1}\right)=\left\{u_{0}, u_{2}, v_{1}, v_{2}, \ldots, v_{r-2}\right\}$ such that $d\left(v_{i}\right)=1$ for each $i \in$ $\{1,2, \ldots, r-2\}$ and $d\left(u_{2}\right)=q \geq 1$. If T^{\prime} is the tree deduced from T by applying Transformation 2.1, then we have,

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(T) & =\sum_{i=2}^{r-2}\left[\Gamma\left(d\left(u_{1}\right), d\left(v_{i}\right)\right)-\Gamma\left(2, d\left(v_{i}\right)+1\right)\right] \\
& +\left[\Gamma\left(d\left(u_{1}\right), d\left(v_{1}\right)\right)-\Gamma\left(2, d\left(v_{1}\right)\right)\right] \\
& +\left[\Gamma\left(d\left(u_{1}\right), d\left(u_{0}\right)\right)-\Gamma\left(2, d\left(u_{0}\right)\right)\right] \\
& +\left[\Gamma\left(d\left(u_{1}\right), d\left(u_{2}\right)\right)-\Gamma\left(2, d\left(u_{2}\right)\right)\right] \tag{1}
\end{align*}
$$

where $\Gamma(a, b)=\frac{1}{\sqrt{\left(a+v_{*}\right)\left(b+v_{*}\right)}}$. Equation (1) gives

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\underline{T}) & =\frac{r-3}{\sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{r-3}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}} \\
& +\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(q+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} \tag{2}
\end{align*}
$$

In the following, we show that ${ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(T^{\prime}\right)<0$. We note that Equation (2) can be re-written as

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(T^{\prime}\right) & =\frac{(r-2)\left(\vartheta_{*}+2-\sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}\right)}{\left(\vartheta_{*}+2\right) \sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}} \\
& +\left(\frac{1}{\sqrt{r+\vartheta_{*}}}-\frac{1}{\sqrt{2+\vartheta_{*}}}\right)\left(\frac{1}{\sqrt{1+\vartheta_{*}}}+\frac{1}{\sqrt{q+\vartheta_{*}}}\right) \tag{3}
\end{align*}
$$

It can be easily observed that right hand side of Equation (3) is negative for all $r \geq 4$ and $\vartheta_{*} \geq 0$. Finally, for $r=3$ and $\vartheta_{*} \geq 0$, Equation (2) yields

$$
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(T^{\prime}\right)<\frac{\sqrt{3+\vartheta_{*}}\left\{1-\sqrt{\left(2+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}\right\}-\sqrt{\left(2+\vartheta_{*}\right)}\left(1+\vartheta_{*}\right)}{\varsigma\left(\vartheta_{*}\right)}<0 .
$$

where

$$
\varsigma\left(\vartheta_{*}\right)=\left(2+\vartheta_{*}\right) \sqrt{\left(3+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}\left\{\sqrt{\left(2+\vartheta_{*}\right)}+\sqrt{\left(3+\vartheta_{*}\right)}\right\}\left\{\left(2+\vartheta_{*}\right)+\sqrt{\left(3+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}\right\} .
$$

This completes the proof.

Remark 2.1. If T is a tree with maximum variable connectvity index, then by repeating Transformation 2.1, any claw can be converted into a vertex of degree 2 .

Lemma 2.8. If $T \in T_{n}$ is a tree with the maximum variable Randic index, then the neighbor of any pendent vertex must be of degree 2 .

Proof. Let w be a pendent vertex of T and u_{4} be its neighbor. Let $P=u_{0} u_{1} u_{2} \ldots u_{k}$ be the longest path of T passing through u_{4} with one end vertex is u_{k} and $u_{k-1} u_{k} \in E(P)$. Lemma 2.7 implies that $d\left(u_{k-1}\right)=2$. Let $d\left(u_{4}\right)=t \geq 3$, then there will be two cases as follows:

Case 1. $t>3$. Construct the tree $\hat{T}=T-u_{4} w+w u_{k}$. Denote by $N\left(u_{4}\right)$ the set of all neighbors of u_{4} other than w and $S_{u_{4}}$ the sum of the weights of all edges incident to u_{4} other than $w u_{4}$. Then we have,

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T}) & =\sum_{x \in \tilde{N}\left(u_{4}\right)}\left[\Gamma\left(d\left(u_{4}\right), d(x)\right)-\Gamma\left(d\left(u_{4}\right)-1, d(x)\right)\right] \\
& +\left[\Gamma\left(d\left(u_{4}\right), d(w)\right)-\Gamma\left(d\left(u_{k}\right)+1, d(w)\right)\right] \\
& \left.+\left[\Gamma\left(d\left(u_{k}\right), d\left(u_{k-1}\right)\right)-\Gamma\left(d\left(u_{k}\right)+1\right), d\left(u_{k-1}\right)\right)\right] \tag{4}
\end{align*}
$$

where $\Gamma(a, b)=\frac{1}{\sqrt{\left(a+v_{*}\right)\left(b+v_{*}\right)}}$. Equation (4) gives

$$
\begin{align*}
{ }^{{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T})} & =\sum_{x \in \tilde{N}\left(u_{4}\right)}\left[\Gamma\left(d\left(u_{4}\right), d(x)\right)\left\{1-\frac{\Gamma\left(d\left(u_{4}\right)-1, d(x)\right)}{\Gamma\left(d\left(u_{4}\right), d(x)\right)}\right\}\right] \\
& +\left[\Gamma\left(d\left(u_{4}\right), d(w)\right)-\Gamma\left(d\left(u_{k}\right)+1, d(w)\right)\right] \\
& \left.+\left[\Gamma\left(d\left(u_{k}\right), d\left(u_{k-1}\right)\right)-\Gamma\left(d\left(u_{k}\right)+1\right), d\left(u_{k-1}\right)\right)\right] . \tag{5}
\end{align*}
$$

Equation (5) yields

$$
\begin{aligned}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)= & \mathrm{S}_{\mathrm{u}_{4}}\left(1-\frac{\sqrt{t+\vartheta_{*}}}{\sqrt{t-1+\vartheta_{*}}}\right)+\frac{1}{\sqrt{\left(t+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} \\
& +\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} .
\end{aligned}
$$

Hence,

$$
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\tilde{T})=\mathrm{S}_{\mathrm{u}_{4}}\left(1-\frac{\sqrt{t+\vartheta_{*}}}{\sqrt{t-1+\vartheta_{*}}}\right)+\frac{1}{\sqrt{\left(t+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} .
$$

Since $t \geq 4$, we have $1-\frac{\sqrt{t+\vartheta_{*}}}{\sqrt{t-1+\vartheta_{*}}}<0$, also $\frac{1}{\sqrt{\left(t+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}<0$. Thus, ${ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(\tilde{\prime}^{\prime}\right)<0$. This contradicts our supposition.

Case 2. $t=3$. Denote the neighbors of u_{4} by $N\left(u_{4}\right)=\left\{u_{3}, u_{5}, w\right\}$ such that $d\left(u_{3}\right)=r \geq 2$ and $d\left(u_{5}\right)=s \geq 2$.

Sub-case 2(a). $r=2$ or $s=2$. Suppose $r=2$ and u_{2} be another neighbor of u_{3} with $d\left(u_{2}\right)=l$. Define $\hat{T}=T-\left\{u_{2} u_{3}, u_{3} u_{4}\right\}+\left\{u_{2} u_{4}, u_{3} w\right\}$. Then T and \bar{T} will be isomorphic if $l=1$, so consider $l \geq 2$.

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)- & { }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T}) \\
& =\sum_{x \in \tilde{N}\left(u_{4}\right)}\left[\Gamma\left(d\left(u_{3}\right), d\left(u_{4}\right)\right)-\Gamma\left(d\left(u_{3}\right)-1, d(w)+1\right)\right] \\
& +\left[\Gamma\left(d\left(u_{4}\right), d(w)\right)-\Gamma\left(d\left(u_{4}\right), d(w)+1\right)\right] \\
& +\left[\Gamma\left(d\left(u_{2}\right), d\left(u_{3}\right)\right)-\Gamma\left(d\left(u_{2}\right), d\left(u_{4}\right)\right)\right] \tag{6}
\end{align*}
$$

where $\Gamma(a, b)=\frac{1}{\sqrt{\left(a+\vartheta_{*}\right)\left(b+v_{*}\right)}}$. Equation (6) gives

$$
\begin{aligned}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T})= & \frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(r-1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(3+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}} \\
& -\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(l+\vartheta_{*}\right)\left(r+\vartheta_{*}\right)}}-+\frac{1}{\sqrt{\left(l+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}} . \\
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T})= & \frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(3+\vartheta_{*}\right)\left(1+\vartheta_{*}\right)}} \\
& -\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(l+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(l+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& { }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(\frac{\prime}{T}\right)=\frac{1}{\sqrt{l+\vartheta_{*}}}\left(\frac{1}{\sqrt{2+\vartheta_{*}}}-\frac{1}{\sqrt{3+\vartheta_{*}}}\right)+\frac{1}{\sqrt{1+\vartheta_{*}}}\left(\frac{1}{\sqrt{3+\vartheta_{*}}}-\frac{1}{\sqrt{2+\vartheta_{*}}}\right) . \\
& \text { Since } 1 \geq 2, \quad{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(\frac{1}{T}\right)=\left(\frac{1}{\sqrt{1+\vartheta_{*}}}-\frac{1}{\sqrt{l+\vartheta_{*}}}\right)\left(\frac{1}{\sqrt{3+\vartheta_{*}}}-\frac{1}{\sqrt{2+\vartheta_{*}}}\right)<0,
\end{aligned}
$$ which is again a contradiction to our supposition.

Sub-case 2(b). If $r \geq 3$ and $s \geq 3$. Construct T from T by deleting the vertices $\left\{u_{4}, w\right\}$, adding the new edge $u_{3} u_{5}$ and a 2 - path to the end vertex of P, we get

$$
\begin{align*}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(T) & =\left[\Gamma\left(d\left(u_{3}\right), d\left(u_{4}\right)\right)-\Gamma(2,2)\right] \\
& +\left[\Gamma\left(d\left(u_{5}\right), d\left(u_{4}\right)\right)-\Gamma\left(d\left(u_{5}\right), d\left(u_{3}\right)\right]\right. \\
& +\left[\Gamma\left(d(w), d\left(u_{4}\right)\right)-\Gamma(2,2)\right] \tag{7}
\end{align*}
$$

where $\Gamma(a, b)=\frac{1}{\sqrt{\left(a+\vartheta_{*}\right)\left(b+\vartheta_{*}\right)}}$. Equation (7) gives

$$
\begin{aligned}
{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}\left(T^{\prime}\right) & =\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(3+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}} \\
& -\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\varphi\left(r, s, \vartheta_{*}\right) & =\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}}-\frac{2}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(3+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}} \\
& -\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(3+\vartheta_{*}\right)}} .
\end{aligned}
$$

By computing $\frac{\partial \varphi}{\partial r}$ and simplifying our calculations, we get

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial r}=\frac{-1}{2 \sqrt{3+\vartheta_{*}}\left(r+\vartheta_{*}\right)^{\frac{3}{2}}}+\frac{1}{2 \sqrt{s+\vartheta_{*}}\left(r+\vartheta_{*}\right)^{\frac{3}{2}}} \\
& \frac{\partial \varphi}{\partial r}=\frac{1}{2\left(r+\vartheta_{*}\right)^{\frac{3}{2}}}\left(\frac{1}{\sqrt{s+\vartheta_{*}}}-\frac{1}{\sqrt{3+\vartheta_{*}}}\right) \leq 0, \text { for } s \geq 3
\end{aligned}
$$

by Lemma 2.1, $\varphi\left(3, s, \vartheta_{*}\right)=\frac{1}{\sqrt{3+\vartheta_{*}}}\left(\frac{1}{\sqrt{1+\vartheta_{*}}}+\frac{1}{\sqrt{3+\vartheta_{*}}}\right)-\frac{2}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}<0$,. Hence, ${ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(\dot{T})<0$.
This completes the proof.

Transformation 2.2. Let $u v \in E(T)$ such that $|T|=n$ and $P=u_{0} u_{1} u_{2} \ldots u_{i} u_{i+1} \ldots u_{k}$ is the longest path of T where $d\left(u_{i}\right)=r \geq 3$ and $d\left(u_{i+1}\right)=s \geq 3$. Construct T from T by deleting the edge $u_{i} u_{i+1}$ and joining the end vertices of the longest path by an edge (join u_{0} and u_{k} by an edge).

Lemma 2.9. Let \dot{T} be a tree that is obtained after applying Transformation 2.2 , for $\vartheta_{*} \geq 0$, it holds that ${ }^{v} \mathrm{R}_{\vartheta_{*}}(T)-{ }^{v} \mathrm{R}_{\vartheta_{*}}(T)>0$.

Proof. Choose an edge $u_{i} u_{i+1}$ such that $d\left(u_{i}\right)+d\left(u_{i+1}\right)$ is maximum in T. Let v_{j}, $1 \leq j \leq r-1$ be the neighbors of u_{i} other than u_{i+1}. Similarly, $w_{j}, 1 \leq j^{\prime} \leq s-1$ be the neighbors of u_{i+1} other than u_{i}. Since u_{1} and u_{k-1} are neighbors of u_{0} and u_{k} respectively; therefore, from Lemma 2.7 and 2.8, we know that $d\left(u_{1}\right)=d\left(u_{k-1}\right)=2$. By the definition of the variable Randić index, one must have

$$
\begin{align*}
{ }^{v} R_{\vartheta_{*}}(\tilde{T})-{ }^{v} R_{\vartheta_{*}}(T) & =\sum_{j=1}^{r-1}\left[\Gamma\left(\mathrm{~d}\left(u_{i}\right)-1, \mathrm{~d}\left(v_{j}\right)\right)-\Gamma\left(d\left(u_{i}\right), d\left(v_{j}\right)\right)\right] \\
& +\sum_{j=1}^{s-1}\left[\Gamma\left(d\left(u_{i+1}\right)-1, d\left(w_{j}\right)\right)-\Gamma\left(d\left(u_{i+1}\right), d\left(w_{j}\right)\right)\right] \\
& +\Gamma\left(d\left(u_{0}\right)+1, d\left(u_{1}\right)\right)-\Gamma\left(d\left(u_{0}\right), d\left(u_{1}\right)\right) \\
& +\Gamma\left(d\left(u_{k}\right)+1, d\left(u_{k-1}\right)\right)-\Gamma\left(d\left(u_{k}\right), d\left(u_{k-1}\right)\right) \\
& +\Gamma\left(d\left(u_{0}\right)+1, d\left(u_{k}\right)+1\right)-\Gamma(r, s), \tag{9}
\end{align*}
$$

where $\Gamma(a, b)=\frac{1}{\sqrt{\left(u+\vartheta_{*}\right)\left(b+\vartheta_{*}\right)}}$. Equation (9) gives

$$
\begin{aligned}
{ }^{v} R_{\vartheta_{*}}(T)-{ }^{v} R_{\vartheta_{*}}(T) & =\sum_{j=1}^{r-1} \Gamma\left(d\left(u_{i}\right), d\left(v_{j}\right)\right)\left[\frac{\Gamma\left(d\left(u_{i}\right)-1, d\left(v_{i}\right)\right)}{\Gamma\left(d\left(u_{i}\right), d\left(v_{j}\right)\right)}-1\right] \\
& +\sum_{j=1}^{s-1} \Gamma\left(d\left(u_{i+1}\right), d\left(w_{j}\right)\right)\left[\frac{\Gamma\left(d\left(u_{i+1}\right)-1, d\left(w_{j}\right)\right)}{\Gamma\left(d\left(u_{i+1}\right), d\left(w_{j}\right)\right)}-1\right] \\
& +\Gamma\left(d\left(u_{0}\right)+1, d\left(u_{1}\right)\right)-\Gamma\left(d\left(u_{0}\right), d\left(u_{1}\right)\right) \\
& +\Gamma\left(d\left(u_{k}\right)+1, d\left(u_{k-1}\right)\right)-\Gamma\left(d\left(u_{k}\right), d\left(u_{k-1}\right)\right) \\
& +\Gamma\left(d\left(u_{0}\right)+1, d\left(u_{k}\right)+1\right)-\Gamma(r, s)
\end{aligned}
$$

So,

$$
\begin{align*}
R_{\vartheta_{*}}\left(T^{\prime}\right)-{ }^{v} R_{\vartheta_{*}}(T) & =\sum_{j=1}^{r-1} \Gamma\left(r, d\left(v_{j}\right)\right)\left[\frac{\sqrt{r+\vartheta_{*}}}{\sqrt{r-1+\vartheta_{*}}}-1\right] \\
& +\sum_{j=1}^{s-1} \Gamma\left(s, d\left(w_{j}\right)\right)\left[\frac{\sqrt{s+\vartheta_{*}}}{\sqrt{s-1+\vartheta_{*}}}-1\right] \\
& +\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} \\
& -\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}} . \tag{10}
\end{align*}
$$

Since $u_{i} u_{i+1}$ be an edge such that $d\left(u_{i}\right)+d\left(u_{i+1}\right)$ is maximum in T; therefore for $j=1,2, \ldots, r-1, f\left(r, d\left(v_{j}\right)\right) \geq f(r, s) \quad$ and $\quad j=1,2, \ldots, s-1, f\left(s, d\left(w_{j}\right)\right) \geq f(r, s)$. Hence, Equation (10) yields

$$
\begin{align*}
& { }^{v} R_{\vartheta_{*}}\left('^{\prime}\right)-{ }^{v} R_{\vartheta_{*}}(T)=\frac{r-1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}\left[\frac{\sqrt{r+\vartheta_{*}}}{\sqrt{r-1+\vartheta_{*}}}-1\right]+\frac{s-1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}\left[\frac{\sqrt{s+\vartheta_{*}}}{\sqrt{s-1+\vartheta_{*}}}-1\right] \\
& +\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} \\
& +\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} \\
& +\frac{1}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} . \\
& { }^{v} R_{\vartheta_{*}}\left('^{\prime}\right)-{ }^{v} R_{\vartheta_{*}}(T) \geq \frac{\mathrm{r}-1}{\sqrt{\left(s+\vartheta_{*}\right)\left(r-1+\vartheta_{*}\right)}}-\frac{\mathrm{r}-1}{\sqrt{\left(s+\vartheta_{*}\right)\left(r+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}+\frac{\mathrm{s}-1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s-1+\vartheta_{*}\right)}} \\
& -\frac{s-1}{\sqrt{\left(s+\vartheta_{*}\right)\left(r+\vartheta_{*}\right)}}+\frac{3}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{2}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} . \\
& { }^{v} R_{\vartheta_{*}}\left(T^{\prime}\right)-{ }^{v} R_{\vartheta_{*}}(T) \geq \frac{\mathrm{r}-1}{\sqrt{\left(s+\vartheta_{*}\right)}}\left(\frac{1}{\sqrt{\left(r-1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)}}\right)+\frac{\mathrm{s}-1}{\sqrt{\left(r+\vartheta_{*}\right)}}\left(\frac{1}{\sqrt{\left(s-1+\vartheta_{*}\right)}}-\frac{1}{\sqrt{\left(s+\vartheta_{*}\right)}}\right) \\
& -\frac{1}{\sqrt{\left(r+\vartheta_{*}\right)\left(s+\vartheta_{*}\right)}}+\frac{3}{\sqrt{\left(2+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}-\frac{2}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}} . \tag{11}
\end{align*}
$$

Using Lemma 2.3-2.6, one can see that (11) holds. Hence, ${ }^{v} R_{\vartheta_{*}}(T)-{ }^{v} R_{\vartheta_{*}}(T)>0$.

Theorem 2.2. For $n \geq 4$ and $\vartheta_{*} \geq 0$, among all trees of a fixed order n, path graph P_{n} is the unique tree with maximum variable Randić index ${ }^{v} \mathrm{R}_{\vartheta_{*}}$, which is $\frac{2}{\sqrt{\left(1+\vartheta_{*}\right)\left(2+\vartheta_{*}\right)}}+\frac{n-3}{2+\vartheta_{*}}$.

3. Conclusion

In the present study, we proved the conjecture proposed in [19]. More precisely, we prove that the P_{n} (path graph) has the maximum variable connectivity index among all trees of fixed order n, where $n \geq 4$.

Acknowledgement. The authors are grateful to the anonymous referee for his/her valuable comments, which have considerably improved the presentation of this paper.

REFERENCES

1. S. Akhter, M. Imran and Z. Raza, Bounds for the general sum-connectivity index of composite graphs, J. Inequal. Appl. 2017 (2017) 76, 12pp.
2. A. Ali, Z. Du and K. Shehzadi, Estimating some general molecular descriptors of saturated hydrocarbons, Mol. Inf. 38 (11-12) (2019) e1900007.
3. D. Amić, D. Davidovic-Amić, D. Bešlo, B. Lučić, N. Trinajstić and S. Nikolić, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38 (1998) 819-822.
4. A. Behtoei, Some relations and bounds for the general first zagreb index, MATCH Commun. Math. Comput. Chem. 81 (2019) 361-370.
5. D. Dimitrov and A. Ali, On the extremal graphs with respect to the variable sum exdeg index, Discrete Math. Lett. 1 (2019) 42-48.
6. R. G. Domenech, J. Gálvez, J. V. de Julián-Ortiz and L. Pogliani, Some new trends in chemical graph theory, Chem. Rev. 108 (2008) 1127-1169.
7. S. Elumalai and T. Mansour, On the general zeroth-order Randić index of bargraphs, Discrete Math. Lett. 2 (2019) 6-9.
8. F. Harary, Graph Theory. Addison-Wesley Pub. Co., Reading, MA, 1969.
9. F. Hayat, On generalized atom-bond connectivity index of cacti, Iranian J. Math.Chem. 10 (4) (2019) 319-330.
10. A. Martínez-Pérez and J. M. Rodríguez, A unified approach to bounds for topological indices on trees and applications, MATCH Commun. Math. Comput. Chem. 82 (3) (2019) 679-698.
11. M. Randić and S. C. Bašak, On use of the variable connectivity index $1 \chi \mathrm{f}$ in QSAR:Toxicity of aliphatic ethers, J. Chem. Inf. Comput. Sci. 41 (2001) 614-618.
12. M. Randić, M. Pompe, D. Mills and S.C. Bašak, Variable connectivity index as a tool for modeling structure-property relationships, Molecules 9 (2004) 11771199.
13. M. Randić, D. Plavšić and N. Lerš, Variable connectivity index for cyclecontaining structures, J. Chem. Inf. Comput. Sci. 41 (3) (2001) 657-662.
14. M. Randić, Novel graph theoretical approach to heteroatoms in quantitative structure-activity relationships, Chem. Intel. Lab. Syst. 10 (1991) 213-227.
15. M. Randić, On computation of optimal parameters for multivariate analysis of structure-property relationship, J. Comput. Chem. 12 (1992) 970-980.
16. M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5124.
17. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
18. S. Yousaf, A. A. Bhatti and A. Ali, On the minimum variable connectivity index of unicyclic graphs with a given order, Discrete Dyn. Nat. Soc. 2020 (2020) 1217567.
19. S. Yousaf, A. A. Bhatti and A. Ali, Minimum variable connectivity index of trees of a fixed order, Discrete Dyn. Nat. Soc. 2020 (2020) 397627.

[^0]: ${ }^{\bullet}$ Corresponding author (Email: shumaila.yousaf@uog.edu.pk).
 DOI: 10.22052/IJMC.2022.243077.1584

