1. A. Ali and Z. Du, On the difference between atom-bond connectivity index and Randić index of binary and chemical trees, Int. J. Quantum Chem. 117 (2017) e25446.
2. B. Bollobásand P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
3. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical Graph Theory-Basics, Univ.
Kragujevac, Kragujevac, 2017, pp. 76–153.
4. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
5. J. Chen and X. Guo, Extreme atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011)713–722.
6. Q. Cui, Q. Qian and L. Zhong, The maximum atom-bond connectivity index for graphs with edge-connectivity one, Discrete Appl. Math. 220 (2017)170–173.
7. K. C. Das, S. Das and B. Zhou, Sum-connectivity index of a graph, Front. Math. China 11 (1) (2016)47–54.
8. K. C. Das and N. Trinajstić, Comparison between the first geometric-arithmetic index and atom-bond connectivity index, Chem. Phys. Lett. 497 (2010) 149–151.
9. J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, The Netherlands, 1999.
10. D. Dimitrov, On the structural properties of trees with minimal atom-bond connectivity index II: Bounds on - and -branches, Discrete Appl. Math. 204 (2016) 90–116.
11. E. Estrada, Atom-bond connectivity and energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422–425.
12. E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem. Sect. A 37 (1998)849–855.
13. B. Furtula, I. Gutman and S. Ediz, On the difference of Zagreb indices, Discrete Appl . Math. 178 (2014) 83–88.
14. Y. Gao and Y. Shao, The smallest index of trees with pendant vertices, MATCH Commun. Math. Comput. Chem. 76 (1) (2016) 141–158.
15. I. Gutman and B. Furtula, Recent Results in the Theory of Randić Index, in: Mathematical Chemistry Monograph 6, University of Kragujevac, Kragujevac, 2008.
16. I. Gutman, B. Furtula, M. B. Ahmadi, S. A. Hosseini, P. S. Nowbandegani and M. Zarrinderakht, The index conundrum, Filomat 27 (2013) 1075–1083.
17. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
18. M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (1) (2012)93–100.
19. N. M. Husin, R. Hasni, Z. Du and A. Ali, More results on extremum Randić indices of (molecular) trees, Filomat 32 (10) (2018) 3581–3590.
20. S. M. Hosamani, B. B . Kulkarni, R. G. Boli and V. M. Gadag: QSPR analysis of certain graph theoretical matrices and their corresponding energy, Appl. Math. Nonlin. Sci. 2 (2017) 131–150.
21. J. Li, S. Balachandran, S. K. Ayyaswamy and Y. B. Venkatakrishnan, The Randićindices of trees, unicyclic graphs and bicyclic graphs, Ars Combin. 127 (2016) 409–419.
22. X. Li and I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, in: Mathematical Chemistry Monograph 1, University of Kragujevac, Kragujevac, Serbia, 2006.
23. X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127–156.
24. J. B. Liu, M. M. Matejić, E. I. Milovanović and I. Z. Milovanović, Some new inequalities for the forgotten topological index and coindex of graphs, MATCH Commun. Math. Comput. Chem. 84 (3) (2020) 719–738.
25. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Dordrecht, Netherlands: Kluwer,1993.
26. G. Pólya and G. Szegö, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin, 1972.
27. M.Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609–6615.
28. M. Randić, On the history of the Randić index and emerging hostility towards chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5–124.
29. J. Radon, Theorie und Anwendungen der absolut additive Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien. 122 (1913) 1295–1438.
30. Z. Raza, A. A. Bhatti and A. Ali, More comparison between the first geometricarithmetic index and atom-bond connectivity index, Miskolc Math. Notes 17 (1) (2016) 561–570.
31. P. S. Ranjini, V. Lokeshaand I. N. Cangul, On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Comput. 218 (2011) 699–702.
32. Z. Shao, P. Wu, Y. Gao, I. Gutman and Z. Zhang, On the maximum index of graphs without pendent vertices, Appl. Math. Comput. 315 (2017) 298–312.
33. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
34. D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009)1369–1376.
35. J. F. Wang and F. Belardo, A lower bound for the first Zagreb index and its applications, MATCH Commun. Math. Comput. Chem. 74 (2015)35–56.
36. W. N. N. N. Wan Zuki, Z. Du, M. K. Jamil and R. Hasni, Extremal trees with respect to the difference between atom-bond connectivity index and Randić index, Symmetry 12 (2020) 1591.
37. D. B. West, Introduction to Graph Theory, 2nd Ed., Prentice Hall, Inc., Upper Saddle River, NJ, USA, 2001.
38. R. Xing, B. Zhou and F. M. Dong, On the atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011)1617–1630.
39. K. Xu, K. C. Das and S. Balachandran, Maximizing the Zagreb indices of (n,m)-graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 641–654.
40. L. Zhong and Q. Cui, On a relation between the atom-bond connectivity and the first geometric-arithmetic indices, Discrete Appl. Math. 185 (2015) 249–253.