Original Scientific Paper

The Schultz Index for Product Graphs

Jhon Jane Aguilar-Alarcón, Gerardo Reyna-Hernández, Jesús Romero-Valencia ${ }^{\bullet}$ And Omar Rosario-Cayetano

Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas $\mathrm{s} / \mathrm{n}, \mathrm{Col}$. La Haciendita. Chilpancingo, Guerrero, México

ARTICLE INFO

Article History:

Received: 24 November 2021
Accepted: 7 February 2022
Published online: 30 March 2022
Academic Editor: Mostafa Tavakoli
Keywords:
Topological index
Schultz index
Cartesian product
Corona product
Lexicographic product
Cartesian sum

> ABSTRACT
> Among the binary operations made with graphs, the cartesian, corona, and lexicographic are three well-known products, as well as the cartesian sum. Topological indices are graph invariants used to describe graphs associated with molecules, one of these is the Schultz index, which can be obtained as $\sum_{u \neq v}(d e g u+d e g v) d(u, v)$, where the sum runs over all pairs of distinct vertices of the graph. In this paper, we give explicit expressions for the Schultz index of cartesian and corona, with alternative proofs to those given in the literature, as well as for lexicographic product and the cartesian sum, all of these formulas involve order and size of factors, additionally, the first three involve both Wiener and Schultz indices of factors, corona and lexicographic also involve Zagreb index and the last one just Zagreb.

© 2022 University of Kashan Press. All rights reserved

1. Introduction

A number that can be used to characterize the graph associated with a molecule is called a topological index, this number is also known as a graph invariant by graph theorists [20]. It is said that the first of these graph invariants was the number of carbon atoms in hydrocarbon molecules, which is precisely the number of vertices in a graph of a molecule

[^0]DOI: 10.22052/IJMC.2022.243309.1597
with hydrogens suppressed, this number was used around 1842 [6]. However, the term "topological index" was used for the first time in 1971 by Hosoya [13], in his paper, he defined the invariant Z in three steps and called it topological index.

Among the best known and studied indices are the Wiener, Zagreb, Randić, Hosoya, Balaban, and Schultz. These indices are given by formulas that involve properties of the graph, for example, degrees of vertices, number of edges, cyclomatic number, distances between vertices or matchings.

Generally, topological indices are correlated with some physical or chemical properties of a molecule, the first one for being used this way was the Wiener index [21], proposed in 1947, back then called "the path number", defined as the sum of distances between two carbon atoms of a molecule and used to compute the boiling points of alkanes. Clearly, this index was not defined in terms of graph theory. In the same way, Hosoya [13] pointed out that this number could be obtained as half of the sum of the entries of the distance matrix of the graph associated with the molecule. This index has been studied for a long time since its first appearance from different perspectives, for example, in [15] it is compared with the Szeged index, in [2] it is computed for the semicomplete product and [14] shows an explicit formula for it of Dutch windmill graphs.

Another index widely studied, and that has a close relationship with that of Wiener, is the Schultz index. This one was proposed in 1989 by Harry P. Schultz [19], and its original purpose was to give a technique for determining a molecular topological index to describe the structure of alkanes. Later, Gutman [10] studied this number, its relation with the Wiener index, called it Schultz index (also called degree distance in the literature) and defined a modification of it. As the Wiener index, Schultz index has been broadly studied and compared with other indices, for example, in [16] an explicit relation between Wiener and Schultz indices is found for acyclic graphs, in [3] is analyzed this index under the join and the strong product of graphs and in [4] an extension of the cut method is applied to this index.

It is known that there are some binary operations (products) between graphs: cartesian, strong, lexicographic, corona, and tensor, to name a few; and these have been studied from several perspectives, for example, [11] is a book which is a standard reference on graph products since it deals with algebraic aspects, some algorithms, and invariants; in [9] the Wiener index is computed for the cartesian product; [15] gives a formula for the Szeged index of the cartesian product; in [5] complete information about the spectrum and the Laplacian spectrum of the corona product is given; [22] shows the Szeged, vertex PI, first and second Zagreb indices for the corona product, in [8] a characterization for the hyperbolicity of lexicographic product of two graphs is given in terms of the factors and in [17] the chromatic number and the circular chromatic number for the cartesian sum is investigated. Even though the significance of most graph products in chemistry is not apparent until now, some of them at times are used in problems in chemical reactivity [6], moreover, there are examples of chemical structures which can be
seen as products: the alkane $\mathrm{C}_{3} \mathrm{H}_{6}$ is the corona of P_{3} and E_{2}, the cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$ is the corona of C_{6} and E_{2}, the nanotube $\operatorname{TUC}_{4}(m, n)$ is also the cartesian product of P_{m} and P_{2}, and C_{m} and P_{2} and a fence and closed fence are the lexicographic product of P_{m} and P_{2}, and C_{m} and P_{2}, respectively [7].

In this paper, we give explicit formulas for the Schultz index of the cartesian, corona, and lexicographic product graphs as well as of cartesian sum, besides we compute explicitly the Wiener and Schultz indices for some graph families.

2. Preliminaries

In this section we set some notation and concepts used throughout the paper, these are taken from [12] and [20]. By graph we mean a simple graph with no loops and it is denoted by $\Gamma=(V, E)$, where V and E are the vertices and edges sets, respectively, $|V|$ is called the order of Γ and $|E|$ its size. Let $\Gamma=(V, E)$ be a graph:

- for $v \in V, \operatorname{deg} v$ denotes its degree, that is, $\operatorname{deg} v=|\{x \in V: x v \in E\}|$. If $\operatorname{deg} v=$ k, for all $v \in V$, then we say that Γ is k-regular;
- for $u, v \in V$, a walk from u to v is a sequence of vertices $u=x_{0}, x_{1}, \ldots, x_{r-1}, x_{r}=$ v such that $x_{i} x_{i+1} \in E$, for $i=0,1, \ldots, r-1$, this sequence is called a $u-v$ walk, a $u-v$ walk which does not repeat vertices is called a path;
- if for any $u, v \in V$ there is a $u-v$ walk, Γ is called connected;
- for Γ connected and $u, v \in V$, the distance between u and v is

$$
d(u, v)=\min \{\text { length of } u-v \text { walks }\}
$$

where the length of a $u-v$ walk is the number of edges in such a walk;

- for Γ connected, the diameter of Γ is

$$
\operatorname{diam} \Gamma=\max \{d(u, v): u, v \in V\}
$$

- the Zagreb index of Γ is defined as

$$
M_{1}(\Gamma)=\sum_{v \in V} \operatorname{deg}^{2} v
$$

Next we recall the definition of some known families of graphs. Let n be a positive integer, then

- the path graph is defined as the graph $\mathrm{P}_{n}=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}\right\} \quad \text { and } \quad E=\left\{v_{i} v_{i+1}: i=1, \ldots, n-1\right\}
$$

- for $n \geq 3$, the cycle graph is defined as $\mathrm{C}_{n}=(V, E)$, where

$$
V=\left\{v_{1}, \ldots, v_{n}\right\} \quad \text { and } E=\left\{v_{i} v_{i+1}: i=1, \ldots, n\right\}
$$

where $n+1$ is taken as 1 ;

- the star graph is $\mathrm{S}_{n}=(V, E)$ with

$$
V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\} \quad \text { and } \quad E=\left\{v_{0} v_{i}: i=1, \ldots, n\right\} ;
$$

- the wheel graph is the graph $\mathrm{W}_{n}=(V, E)$ with

$$
V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\} \quad \text { and } E=\left\{v_{0} v_{i}, v_{i} v_{i+1}: i=1, \ldots, n\right\}
$$

where $n+1$ is taken as 1 ;

- the complete graph is the graph $\mathrm{K}_{n}=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}\right\} \quad \text { and } \quad E=\left\{v_{i} v_{j}: i, j=1, \ldots, n \text { and } i \neq j\right\} .
$$

3. The Schultz Index

In this section, the Wiener and Schultz indices are defined and formulas for these applied to some known families are stated.

Definition 1. [20] Let $\Gamma=(V, E)$ be a graph, the Wiener index of Γ is defined by the formula $W(\Gamma)=\sum_{u \neq v} d(u, v)$, where the sum runs over all pairs of distinct vertices of Γ.

Note that if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, the Wiener index of Γ can be written as

$$
W(\Gamma)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d\left(v_{i}, v_{j}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d\left(v_{i}, v_{j}\right) .
$$

The following proposition states the precise value of the Wiener index for some families of graphs.

Proposition 3.2. Let n be a positive integer, then

1. $W\left(\mathrm{P}_{n}\right)=n(n-1)(n+1) / 6$;
2. $W\left(\mathrm{C}_{n}\right)= \begin{cases}n^{3} / 8, & \text { if } n=2 k ; \\ \left(n^{3}-n\right) / 8, & \text { if } n=2 k-1 ;\end{cases}$
3. $W\left(\mathrm{~S}_{n}\right)=n^{2}$;
4. $W\left(\mathrm{~W}_{n}\right)=n(n-1)$;
5. $W\left(\mathrm{~K}_{n}\right)=n(n-1) / 2$.

Proof. All these formulas follow from the very definition, we just show the proof for paths and wheels. For paths we may observe that $d\left(v_{i}, v_{j}\right)=j-i$, for $i \leq j$, thus,

$$
\begin{aligned}
W\left(\mathrm{P}_{n}\right) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d\left(v_{i}, v_{j}\right) \\
& =(1+2+\cdots+(n-1))+(1+2+\cdots+(n-2))+\cdots+(1+2)+1 \\
& =\frac{(n-1) n}{2}+\frac{(n-2)(n-1)}{2}+\cdots+\frac{2(3)}{2}+\frac{1(2)}{2} \\
& =\frac{1}{2}\left(\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}\right) \\
& =\frac{1}{6} n(n-1)(n+1) .
\end{aligned}
$$

And for wheels we have $d\left(v_{.}, v_{i}\right)=1$, for $i=1, \ldots, n$, and

$$
d\left(v_{i}, v_{j}\right)= \begin{cases}1, & \text { if } j=i+1 \\ 2, & \text { otherwise }\end{cases}
$$

thus,

$$
\begin{aligned}
W\left(\mathrm{~W}_{n}\right) & =\sum_{i=0}^{n-1} \sum_{j=i+1}^{n} d\left(v_{i}, v_{j}\right) \\
& =(1+\cdots+1)+(1+2+\cdots+2+1)+(1+2+\cdots+2)+\cdots+(1+2)+1 \\
& =n+(2+2(n-3))+(1+2(n-3))+\cdots+(1+2(1))+1 \\
& =(2 n-2)+2\left(\frac{(n-2)(n-1)}{2}\right) \\
& =n^{2}-n .
\end{aligned}
$$

Next, the definition of the Schultz index is given. It can be seen that this index is related to that of Wiener, indeed Lemma 3.1 shows one explicit relation between them.

Definition 2. [10] Let $\Gamma=(V, E)$ be a graph, the Schultz index of Γ is defined by the formula $S(\Gamma)=\sum_{u \neq v}(\operatorname{deg} u+\operatorname{deg} v) d(u, v)$, where the sum runs over all pairs of distinct vertices of Γ.

Note that if $V=\left\{v_{1}, \ldots, v_{n}\right\}$, then the Schultz index of Γ can be computed as follows

$$
\begin{aligned}
S(\Gamma) & =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\operatorname{deg} v_{i}+\operatorname{deg} v_{j}\right) d\left(v_{i}, v_{j}\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\operatorname{deg} v_{i}+\operatorname{deg} v_{j}\right) d\left(v_{i}, v_{j}\right) .
\end{aligned}
$$

The next lemma shows an explicit relation between Wiener and Schultz indices, and its proof follows from the definition.

Lemma 3.1. Let Γ be a k-regular graph, then $S(\Gamma)=2 k W(\Gamma)$.

Now, we state the value of the Schultz index for some families of graphs.
Proposition 3.2. Let n be a positive integer, then

1. $S\left(\mathrm{P}_{n}\right)=n(n-1)(2 n-1) / 3$;
2. $S\left(\mathrm{C}_{n}\right)= \begin{cases}n^{3} / 2, & \text { if } n=2 k ; \\ \left(n^{3}-n\right) / 2, & \text { if } n=2 k-1 ;\end{cases}$
3. $S\left(\mathrm{~S}_{n}\right)=n(3 n-1)$;
4. $S\left(\mathrm{~W}_{n}\right)=n(7 n-9)$;
5. $S\left(\mathrm{~K}_{n}\right)=n(n-1)^{2}$.

Proof. These formulas are not difficult to prove, we just show the proof for those of paths and cycles. For paths, since every vertex of P_{n} has degree 2 , but v_{1} and v_{n}, we get

$$
\begin{aligned}
S\left(\mathrm{P}_{n}\right)= & \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\operatorname{deg} v_{i}+\operatorname{deg} v_{j}\right) d\left(v_{i}, v_{j}\right) \\
= & 3(n-2)(n-1)+2(n-1) \\
& +4\left(\frac{(n-3)(n-2)}{2}+\frac{(n-4)(n-3)}{2}+\cdots+\frac{1(2)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & 3(n-2)(n-1)+2(n-1) \\
& +2\left((n-2)^{2}-(n-2)+(n-3)^{2}-(n-3)+\cdots+2^{2}-2\right) \\
= & 3(n-2)(n-1)+2(n-1) \\
& +2\left(\frac{(n-2)(n-1)(2 n-3)}{6}-\frac{(n-2)(n-1)}{2}\right) \\
= & \frac{n(n-1)(2 n-1)}{3} .
\end{aligned}
$$

And for cycles note that C_{n} is a 2-regular graph, thus, by Lemma 3.1. we have $S\left(\mathrm{C}_{n}\right)=$ $4 W\left(\mathrm{C}_{n}\right)$, hence,

$$
S\left(\mathrm{C}_{n}\right)= \begin{cases}\frac{n^{3}}{2}, & \text { if } n=2 k \\ \frac{n^{3}-n}{2}, & \text { if } n=2 k-1\end{cases}
$$

There is another relation between Wiener and Schultz indices for trees, which is given in [10], it says that if Γ is a tree with n vertices, then

$$
S(\Gamma)=4 W(\Gamma)-n(n-1)
$$

We obtain immediately the following corollary which relates these indices for the families we have considered.

Corollary 3.1.

1. $S\left(\mathrm{P}_{n}\right)=4 W\left(\mathrm{P}_{n}\right)-n(n-1)$;
2. $S\left(\mathrm{C}_{n}\right)=4 W\left(\mathrm{C}_{n}\right)$;
3. $S\left(\mathrm{~S}_{n}\right)=4 W\left(\mathrm{~S}_{n}\right)-n(n+1)$;
4. $S\left(\mathrm{~W}_{n}\right)=7 W\left(\mathrm{~W}_{n}\right)-2 n$;
5. $S\left(\mathrm{~K}_{n}\right)=2(n-1) W\left(\mathrm{~K}_{n}\right)$.

4. The Schultz Index for Graph Products

In this section, explicit formulas are given for the Schultz index of the cartesian, corona, and lexicographic products as well as of the cartesian sum, the first three involve both Wiener and Schultz indices of factors, corona and lexicographic also involve Zagreb index and just Zagreb for the last one. It is worth mentioning that the Schultz index for the cartesian and corona product has been already computed in [18] and [1], respectively, nevertheless, we present the formulas and give alternative proofs for them. From now on the graphs we mention are connected, unless we say otherwise.

4.1 Cartesian Product

Definition 3. [11] Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The cartesian product of Γ_{1} and Γ_{2} is defined as the graph $\Gamma=(V, E)$ given by $V=V_{1} \times V_{2}$ and E $=\left\{(u, y)\left(u, y^{\prime}\right): y y^{\prime} \in E_{2}\right\} \cup\left\{(x, v)\left(x^{\prime}, v\right): x x^{\prime} \in E_{1}\right\}$. We denote this graph by $\Gamma_{1} \times \Gamma_{2}$.

From the definition, we may observe immediately that this operation commutes, that is, $\Gamma_{1} \times \Gamma_{2} \cong \Gamma_{2} \times \Gamma_{1}$, Figure 1 shows a representation of the cartesian product of P_{3} and C_{4}. Moreover, it is worthy to note that for any vertices (u, v) and (x, y) in $\Gamma_{1} \times \Gamma_{2}$ the following relation holds

$$
\operatorname{deg}(u, v)=\operatorname{deg} u+\operatorname{deg} v
$$

Figure 1: A representation of $\mathrm{P}_{3} \times \mathrm{C}_{4}$.
The following lemma is proved in [11] and relates the distance in the Cartesian product with that of the factors.

Lemma 4.1. Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$ and let (u, v) and (x, y) be two vertices of Γ, then

$$
d((u, v),(x, y))=d(u, x)+d(v, y)
$$

Theorem 4.1. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, with $V_{1}=\left\{u_{1}, \ldots, u_{n_{1}}\right\}, \quad V_{2}=\left\{v_{1}, \ldots, v_{n_{2}}\right\}, \quad\left|E_{1}\right|=m_{1} \quad$ and $\quad\left|E_{2}\right|=m_{2}, \quad$ then $S\left(\Gamma_{1} \times \Gamma_{2}\right)=$ $n_{2}{ }^{2} S\left(\Gamma_{1}\right)+n_{1}{ }^{2} S\left(\Gamma_{2}\right)+4 n_{2} m_{2} W\left(\Gamma_{1}\right)+4 n_{1} m_{1} W\left(\Gamma_{2}\right)$.

Proof. First note that

$$
\begin{aligned}
S\left(\Gamma_{1} \times \Gamma_{2}\right) & =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s>j}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right) \\
& +\sum_{i=1}^{n_{1}-1} \sum_{r>i}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right),
\end{aligned}
$$

that is, we may compute the Schultz index for this product by dividing the sum into two parts: for $i=r$ and for $i \neq r$. For $i=r$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(2 \operatorname{deg} u_{i}+\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right) \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(2 \operatorname{deg} u_{i} d\left(v_{j}, v_{s}\right)+\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} 2 \operatorname{deg} u_{i} d\left(v_{j}, v_{s}\right)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n_{1}} 2 \operatorname{deg} u_{i} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} d\left(v_{j}, v_{s}\right)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right) \\
& =\sum_{i=1}^{n_{1}} 2 \operatorname{deg} u_{i} W\left(\Gamma_{2}\right)+\sum_{i=1}^{n_{1}} S\left(\Gamma_{2}\right) \\
& =4 m_{1} W\left(\Gamma_{2}\right)+n_{1} S\left(\Gamma_{2}\right) .
\end{aligned}
$$

While for $i \neq r$ we get

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right) \\
& \quad=\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} u_{i}+\operatorname{deg} v_{j}+\operatorname{deg} u_{r}+\operatorname{deg} v_{s}\right)\left(d\left(u_{i}, u_{r}\right)+d\left(v_{j}, v_{s}\right)\right) \\
& \quad=\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right)+\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(v_{j}, v_{s}\right)\right. \\
& \left.\quad+\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(u_{i}, u_{r}\right)+\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right)\right) \\
& \quad=\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(v_{j}, v_{s}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(u_{i}, u_{r}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right) \\
& \quad=\sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}} d\left(v_{j}, v_{s}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r i+1}^{n_{1}} d\left(u_{i}, u_{r}\right) \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \\
& \quad+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(v_{j}, v_{s}\right) \\
& \quad=\sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}} S\left(\Gamma_{1}\right)+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) 2 W\left(\Gamma_{2}\right) \\
& \quad+W\left(\Gamma_{1}\right) \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right)+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} 2 S\left(\Gamma_{2}\right) \\
& \quad=n_{2}^{2} S\left(\Gamma_{1}\right)+4\left(n_{1}-1\right) m_{1} W\left(\Gamma_{2}\right)+4 n_{2} m_{2} W\left(\Gamma_{1}\right)+n_{1}\left(n_{1}-1\right) S\left(\Gamma_{2}\right) .
\end{aligned}
$$

Taking the summation of these computations we obtain the result.

4.2 Corona Product

Definition 4. [12] Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The corona product of Γ_{1} and Γ_{2} is the graph $\Gamma=(V, E)$ given by taking one copy of Γ_{1} and $\left|V_{1}\right|$ copies of Γ_{2}, joining the r-th vertex of Γ_{1} to every vertex in the r-th copy of Γ_{2}. In symbols,

$$
\begin{aligned}
& V=\left(V_{1} \times\left\{v_{0}\right\}\right) \cup\left(V_{1} \times V_{2}\right) \text { and } \\
& E=E_{1} \cup\left\{\left(u_{r}, v_{i}\right)\left(u_{r}, v_{j}\right): v_{i} v_{j} \in E_{2}\right\} \cup\left\{\left(u_{r}, v_{0}\right)\left(u_{r}, v_{i}\right): v_{i} \in V_{2}\right\}
\end{aligned}
$$

where $V_{1} \times\left\{v_{0}\right\}$ are the vertices of the copy of Γ_{1} and $V_{1} \times V_{2}$ are those of the $\left|V_{1}\right|$ copies of Γ_{2}. We denote the corona product of these graphs by $\Gamma_{1} \odot \Gamma_{2}$.

Figure 2: A representation of $\mathrm{P}_{3} \odot \mathrm{C}_{4}$.

We may note that, in general, this operation is not commutative, that is, $\Gamma_{1} \odot \Gamma_{2} \not ⿻$ $\Gamma_{2} \odot \Gamma_{1}$, Figure 2 shows a representation of the corona product of P_{3} and C_{4}. Moreover, it is straightforward to verify that for a vertex (u, v) of $\Gamma_{1} \odot \Gamma_{2}$, we have

$$
\operatorname{deg}(u, v)= \begin{cases}\operatorname{deg} u+\left|V_{2}\right|, & \text { if } v=v_{0} \\ \operatorname{deg} v+1, & \text { otherwise }\end{cases}
$$

Observe that if a and b are two vertices of $\Gamma_{1} \odot \Gamma_{2}$, then exactly one of the following cases holds.

- a and b are in the copy of Γ_{1};
- a is in the copy of Γ_{1} and b in the j-th copy of Γ_{2} (the one which makes a cone with the j-th vertex of Γ_{1});
- a is in the i-th copy of Γ_{2} and b in the j-th copy of Γ_{2};
- a and b are in the i-th copy of Γ_{2}.

The following result follows easily considering these cases.

Lemma 4.2. Let $\Gamma=\Gamma_{1} \odot \Gamma_{2}$ and consider $a=\left(u_{i}, v_{r}\right)$ and $b=\left(u_{j}, v_{s}\right)$ two vertices of Γ, then

$$
d(a, b)= \begin{cases}d\left(u_{i}, u_{j}\right), & \text { for case } i \\ d\left(u_{i}, u_{j}\right)+1, & \text { for case } i i \\ d\left(u_{i}, u_{j}\right)+2, & \text { for case iii } \\ \min \left\{d\left(v_{r}, v_{s}\right), 2\right\}, & \text { for case iv }\end{cases}
$$

Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, with $V_{1}=\left\{u_{1}, \ldots, u_{n_{1}}\right\}$ and $V_{2}=\left\{v_{1}, \ldots, v_{n_{2}}\right\}$ and consider $\Gamma=(V, E)$ as the corona product of Γ_{1} and Γ_{2}. Note that we may compute $S(\Gamma)$ by calculating some sums separately, considering the cases for where are taken the pairs of vertices, as follows.

$$
\begin{aligned}
S(\Gamma) & =\sum_{a \neq b}(\operatorname{deg} a+\operatorname{deg} b) d(a, b) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg}\left(u_{i}, v_{0}\right)+\operatorname{deg}\left(u_{r}, v_{0}\right)\right) d\left(\left(u_{i}, v_{0}\right),\left(u_{r}, v_{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{0}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{0}\right),\left(u_{r}, v_{s}\right)\right) \\
& +\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{0}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{0}\right)\right) \\
& +\sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right) \\
& +\sum_{i=1}^{n_{1}} \sum_{j=0}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right) .
\end{aligned}
$$

Thus, the first part is determined for the case (i), the second and third for case (ii), the fourth for (iii) and the fifth for (iv).

For the first part of the sum we have

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg}\left(u_{i}, v_{0}\right)+\operatorname{deg}\left(u_{r}, v_{0}\right)\right) d\left(\left(u_{i}, v_{0}\right),\left(u_{r}, v_{0}\right)\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}+2 n_{2}\right) d\left(u_{i}, u_{r}\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right)+2 n_{2} d\left(u_{i}, u_{r}\right) \\
& =S\left(\Gamma_{1}\right)+2 n_{2} W\left(\Gamma_{1}\right)
\end{aligned}
$$

For the second part

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{0}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{0}\right),\left(u_{r}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} u_{i}+\operatorname{deg} v_{s}+n_{2}+1\right)\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}} \operatorname{deg} u_{i}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& +\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}} \operatorname{deg} v_{s}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& +\left(n_{2}+1\right) \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& =n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{i} d\left(u_{i}, u_{r}\right) \\
& +n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{i} \sum_{s=1}^{n_{2}} \operatorname{deg} v_{s} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& +\left(n_{2}+1\right) \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& =n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{i} d\left(u_{i}, u_{r}\right)+n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{i}+\sum_{s=1}^{n_{2}} \operatorname{deg} v_{s} W\left(\Gamma_{1}\right) \\
& +\frac{n_{1}\left(n_{1}-1\right)}{2} \sum_{s=1}^{n_{2}} \operatorname{deg} v_{s}+n_{2}\left(n_{2}+1\right) W\left(\Gamma_{1}\right)+\frac{n_{2}\left(n_{2}+1\right) n_{1}\left(n_{1}-1\right)}{2} .
\end{aligned}
$$

For the third one

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{0}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{0}\right)\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(\operatorname{deg} v_{j}+1+\operatorname{deg} u_{r}+n_{2}\right)\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg} u_{r}\left(d\left(u_{i}, u_{r}\right)+1\right)+\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& +\left(n_{2}+1\right) \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(d\left(u_{i}, u_{r}\right)+1\right) \\
& =n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{r} d\left(u_{i}, u_{r}\right)+n_{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \operatorname{deg} u_{r}+\sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} W\left(\Gamma_{1}\right) \\
& +\sum_{j=1}^{n_{2}} \frac{n_{1}\left(n_{1}-1\right) \operatorname{deg} v_{j}}{2}+n_{2}\left(n_{2}+1\right) W\left(\Gamma_{1}\right)+\frac{n_{2}\left(n_{2}+1\right) n_{1}\left(n_{1}-1\right)}{2} .
\end{aligned}
$$

Now, for the fourth part

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}+2\right)\left(d\left(u_{i}, u_{r}\right)+2\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(u_{i}, u_{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2 \sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \\
& +2 \sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}} d\left(u_{i}, u_{r}\right)+\sum_{i=1}^{n_{1}-1} \sum_{j=1}^{n_{2}} \sum_{r=i+1}^{n_{1}} \sum_{s=1}^{n_{2}} 4 \\
& =2 n_{2} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} d\left(u_{i}, u_{r}\right)+n_{1}\left(n_{1}-1\right)\left(2 n_{2}\right) \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} \\
& +2 n_{2}{ }^{2} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} d\left(u_{i}, u_{r}\right)+n_{2}^{2} n_{1}\left(n_{1}-1\right) 2 \\
& =2 n_{2} W\left(\Gamma_{1}\right) \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j}+2 n_{1} n_{2}\left(n_{1}-1\right) \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j}+2 n_{2}{ }^{2} W\left(\Gamma_{1}\right)+2 n_{2}{ }^{2} n_{1}\left(n_{1}-1\right) .
\end{aligned}
$$

Finally, for the last part

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}} \sum_{j=0}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}+2\right)\left(\min \left\{d\left(v_{j}, v_{s}\right), 2\right\}\right) \\
& +\sum_{i=1}^{n_{1}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} u_{i}+n_{2}+\operatorname{deg} v_{s}+1\right) \\
& =n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg} u_{i}+n_{1} \sum_{s=1}^{n_{2}} \operatorname{deg} v_{s}+n_{1} n_{2}\left(n_{2}+1\right) \\
& +n_{1} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}+2\right)\left(\min \left\{d\left(v_{j}, v_{s}\right), 2\right\}\right) \\
& =n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg} u_{i}+n_{1} \sum_{s=1}^{n_{2}} \operatorname{deg} v_{s}+n_{1} n_{2}\left(n_{2}+1\right) \\
& +n_{1} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right)\left(\min \left\{d\left(v_{j}, v_{s}\right), 2\right\}\right) \\
& +2 n_{1} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} & =\sum_{v_{j} v_{s} \in E_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \\
& +\sum_{v_{j} v_{s} \notin E_{2}} 2\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right)
\end{aligned}
$$

since, $d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right)=1$, for $v_{j} v_{s} \in E_{2}$, and $d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right)=2$, when v_{j} and v_{s} are not adjacent, then v_{j} is $\operatorname{deg} v_{j}$ times in the first sum, for $j=1, \ldots, n_{2}$, thus,

$$
\sum_{v_{j} v_{s} \in E_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right)=\sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}
$$

and in the second sum v_{j} is $n_{2}-\left(\operatorname{deg} v_{j}+1\right)$ times, which implies

$$
\sum_{v_{j} v_{s} \notin E_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) 2=\sum_{j=1}^{n_{2}} 2 \operatorname{deg} v_{j}\left(n_{2}-\left(\operatorname{deg} v_{j}+1\right)\right),
$$

obtaining

$$
\begin{aligned}
& \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& =\sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}+\sum_{j=1}^{n_{2}} 2 \operatorname{deg} v_{j}\left(n_{2}-\left(\operatorname{deg} v_{j}+1\right)\right) \\
& =\sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}+2 n_{2} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j}-2 \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}-2 \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} \\
& =4 n_{2} m_{2}-\sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}-4 m_{2}=4 m_{2}\left(n_{2}-1\right)-M_{1}\left(\Gamma_{2}\right) .
\end{aligned}
$$

We may note that

$$
\sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} 2 \min \left\{d\left(v_{j}, v_{s}\right), 2\right\}=2\left(n_{2}\left(n_{2}-1\right)-m_{2}\right)
$$

since each of the $n_{2}\left(n_{2}-1\right) / 2$ pairs of the addends are at distance 2 , but those m_{2} which are adjacent and, obviously, are at distance 1 . Hence, the last part can be written as

$$
2 n_{2} m_{1}+2 n_{1} m_{2}+n_{1} n_{2}\left(n_{2}+1\right)+4 n_{1} m_{2}\left(n_{2}-1\right)-n_{1} M_{1}\left(\Gamma_{2}\right)+2 n_{1}\left(n_{2}\left(n_{2}-1\right)-m_{2}\right) .
$$

Taking the summation of the five parts we get
$S(\Gamma)=\left(n_{2}+1\right) S\left(\Gamma_{1}\right)+\left(2 n_{2}+2 n_{2}\left(n_{2}+1\right)+2 n_{2}^{2}\right) W\left(\Gamma_{1}\right)$

$$
\begin{aligned}
& +\left(4+4 n_{2}\right) m_{2} W\left(\Gamma_{1}\right)+2 m_{2}\left(n_{1}\left(n_{1}-1\right)+2 n_{2} n_{1}\left(n_{1}-1\right)+n_{1}\right) \\
& +2 m_{1}\left(n_{2}\left(n_{1}-1\right)+n_{2}\right)+n_{2} n_{1}\left(n_{2}+1\right)\left(n_{1}-1\right)+2 n_{2}{ }^{2} n_{1}\left(n_{1}-1\right) \\
& +n_{2} n_{1}\left(n_{2}+1\right)+4 n_{1} m_{2}\left(n_{2}-1\right)-n_{1} M_{1}\left(\Gamma_{2}\right)+2 n_{1}\left(n_{2}\left(n_{2}-1\right)-m_{2}\right) \\
& =\left(n_{2}+1\right) S\left(\Gamma_{1}\right)+4 n_{2}\left(n_{2}+1\right) W\left(\Gamma_{1}\right)+4 m_{2}\left(n_{2}+1\right) W\left(\Gamma_{1}\right) \\
& +m_{2}\left(4 n_{2} n_{1}{ }^{2}+2 n_{1}{ }^{2}-4 n_{2} n_{1}\right)+2 n_{2} n_{1} m_{1}+3 n_{2}{ }^{2} n_{1}{ }^{2}+n_{2} n_{1}^{2}-2 n_{2}{ }^{2} n_{1} \\
& +4 n_{1} m_{2}\left(n_{2}-1\right)-n_{1} M_{1}\left(\Gamma_{2}\right)+2 n_{1}\left(n_{2}\left(n_{2}-1\right)-m_{2}\right) .
\end{aligned}
$$

Summarizing, we have proved the following result.

Theorem 4.2. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, with $V_{1}=\left\{u_{1}, \ldots, u_{n_{1}}\right\}, V_{2}=\left\{v_{1}, \ldots, v_{n_{2}}\right\},\left|E_{1}\right|=m_{1}$ and $\left|E_{2}\right|=m_{2}$, then

$$
\begin{aligned}
S\left(\Gamma_{1} \odot \Gamma_{2}\right) & =\left(n_{2}+1\right) S\left(\Gamma_{1}\right)+4\left(n_{2}+m_{2}\right)\left(n_{2}+1\right) W\left(\Gamma_{1}\right)+2 n_{1} m_{2}\left(2 n_{2} n_{1}+n_{1}-3\right) \\
& +n_{1} n_{2}\left(2 m_{1}+3 n_{1} n_{2}+n_{1}-2\right)-n_{1} M_{1}\left(\Gamma_{2}\right) .
\end{aligned}
$$

The next corollary follows at once from this theorem.

Corollary 4.1. Under the hypothesis of the last theorem, if diam $\Gamma_{2} \leq 2$, then

$$
\begin{aligned}
S\left(\Gamma_{1} \odot \Gamma_{2}\right) & =\left(n_{2}+1\right) S\left(\Gamma_{1}\right)+4\left(n_{2}+m_{2}\right)\left(n_{2}+1\right) W\left(\Gamma_{1}\right) \\
& +n_{1} n_{2}\left(2 m_{1}+3 n_{1} n_{2}+n_{1}-2 n_{2}\right)+2 n_{1} m_{2}\left(2 n_{1} n_{2}+n_{1}-2 n_{2}\right) \\
& +n_{1}\left(S\left(\Gamma_{2}\right)+2 W\left(\Gamma_{2}\right)\right) .
\end{aligned}
$$

4.3 Lexicographic Product

Definition 5. [11] Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The lexicographic product of Γ_{1} and Γ_{2} is defined as the graph $\Gamma=(V, E)$ given by $V=V_{1} \times V_{2}$ and

$$
E=\left\{(u, v)(x, y): u x \in E_{1}\right\} \cup\left\{(x, v)(x, y): v y \in E_{2}\right\} .
$$

We denote this graph by $\Gamma_{1} \circ \Gamma_{2}$.

Observe that $\Gamma_{1} \circ \Gamma_{2}$ can be obtained by taking $\left|V_{1}\right|$ copies of Γ_{2} and joining all vertices of $\Gamma_{2, u}$ with all the vertices of $\Gamma_{2, x}$ (the copies corresponding to vertices u and x, respectively), whenever $u x \in E_{1}$. Figure 3 shows the lexicographic product of P_{3} with C_{4}.

We may note that, in general, this operation does not commute. Moreover, it is not difficult to verify that the degree of a vertex (u, v) of $\Gamma_{1} \circ \Gamma_{2}$ can be obtained as $\operatorname{deg}(u, v)=\operatorname{deg} v+\operatorname{deg} u \cdot\left|V_{2}\right|$.

Now, observe that given two vertices a and b of $\Gamma_{1} \circ \Gamma_{2}$, we have

- a and b are in the same copy $\Gamma_{2, u}$ or
- a is in a copy $\Gamma_{2, u}$ and b in another copy $\Gamma_{2, x}$.

Figure 3: A representation of $\mathrm{P}_{3} \circ \mathrm{C}_{4}$.

The following lemma follows quickly considering these cases.

Lemma 4.3. Let $\Gamma=\Gamma_{1} \circ \Gamma_{2}$ and consider $a=(u, v)$ and $b=(x, y)$ two vertices of Γ, then

$$
d(a, b)= \begin{cases}\min \{d(v, y), 2\}, & \text { if } u=x \\ d(u, x), & \text { otherwise } .\end{cases}
$$

Theorem 4.3. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, with $V_{1}=\left\{u_{1}, \ldots, u_{n_{1}}\right\}, V_{2}=\left\{v_{1}, \ldots, v_{n_{2}}\right\},\left|E_{1}\right|=m_{1}$ and $\left|E_{2}\right|=m_{2}$, then

$$
\begin{aligned}
S\left(\Gamma_{1} \circ \Gamma_{2}\right) & =n_{2}^{3} S\left(\Gamma_{1}\right)+4 n_{2} m_{2} W\left(\Gamma_{1}\right)+4 n_{2} m_{1}\left(n_{2}\left(n_{2}-1\right)-m_{2}\right) \\
& +4 n_{1} m_{2}\left(n_{2}-1\right)-n_{1} M_{1}\left(\Gamma_{2}\right)
\end{aligned}
$$

Proof. First note that

$$
\begin{aligned}
S\left(\Gamma_{1} \circ \Gamma_{2}\right) & =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right) \\
& +\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right)
\end{aligned}
$$

thus, we may compute the Schultz index by dividing the sum into two parts: one for $i \neq r$ and the other for $i=r$. For $i \neq r$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{r}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{r}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+n_{2} \operatorname{deg} u_{i}+\operatorname{deg} v_{s}+n_{2} \operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right) \\
& =\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}} n_{2}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right) \\
& +\sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) d\left(u_{i}, u_{r}\right) \\
& =n_{2} \sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}} \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}}\left(\operatorname{deg} u_{i}+\operatorname{deg} u_{r}\right) d\left(u_{i}, u_{r}\right) \\
& +\sum_{j=1}^{n_{2}} \sum_{s=1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \sum_{i=1}^{n_{1}-1} \sum_{r=i+1}^{n_{1}} d\left(u_{i}, u_{r}\right) \\
& =n_{2}^{3} S\left(\Gamma_{1}\right)+2 n_{2} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} W\left(\Gamma_{1}\right) \\
& =n_{2}^{3} S\left(\Gamma_{1}\right)+4 n_{2} m_{2} W\left(\Gamma_{1}\right)
\end{aligned}
$$

And for $i=r$ we obtain

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+\operatorname{deg}\left(u_{i}, v_{s}\right)\right) d\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{s}\right)\right) \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+n_{2} \operatorname{deg} u_{i}+\operatorname{deg} v_{s}+n_{2} \operatorname{deg} u_{i}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& =\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(2 n_{2} \operatorname{deg} u_{i}+\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& =2 n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg} u_{i} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& +\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& =4 n_{2} m_{1} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}} \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} \\
& +n_{1} \sum_{j=1}^{n_{2}-1} \sum_{s=j+1}^{n_{2}}\left(\operatorname{deg} v_{j}+\operatorname{deg} v_{s}\right) \min \left\{d\left(v_{j}, v_{s}\right), 2\right\} .
\end{aligned}
$$

By the computations made for corona product, the last expression can be written as

$$
4 n_{2} m_{1}\left(n_{2}\left(n_{2}-1\right)-m_{2}\right)+4 n_{1} m_{2}\left(n_{2}-1\right)-n_{1} M_{1}\left(\Gamma_{2}\right) .
$$

Taking the summation of these we get the result.

Corollary 4.2. Under the hypothesis of the last theorem, if diam $\Gamma_{2} \leq 2$, then

$$
S\left(\Gamma_{1} \circ \Gamma_{2}\right)=n_{2}^{3} S\left(\Gamma_{1}\right)+4 n_{2} m_{2} W\left(\Gamma_{1}\right)+4 n_{2} m_{1} W\left(\Gamma_{2}\right)+n_{1} S\left(\Gamma_{2}\right)
$$

4.4 Cartesian Sum

Definition 6. [17] Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The cartesian sum of Γ_{1} and Γ_{2} is defined as the graph $\Gamma=(V, E)$ given by $V=V_{1} \times V_{2}$ and

$$
E=\left\{(u, v)(x, y): u x \in E_{1} \text { or } v y \in E_{2}\right\}
$$

We denote this graph by $\Gamma_{1} \oplus \Gamma_{2}$.

It is clear that cartesian sum of graphs commutes. Note that $\Gamma_{1} \oplus \Gamma_{2}$ contains $\Gamma_{1} \circ \Gamma_{2}$ as subgraph, in fact, the edges that are not considered in lexicographic product are those of the form $(u, v)(x, y)$, with $u \neq x$ and $v y \in E_{2}$. Figure 4 shows the cartesian sum of P_{3} with C_{4}.

Figure 4: A representation of $\mathrm{P}_{3} \circ \mathrm{C}_{4}$.

Consider (u, v) a vertex of $\Gamma_{1} \oplus \Gamma_{2}$ and suppose that u_{1}, \ldots, u_{k} are the neighbors of u, then $\left(u_{i}, y\right)$ are neighbors of (u, v), for $i=1, \ldots, k$ and for all $y \in V_{2}$, analogously, if v_{1}, \ldots, v_{l} are the neighbors of v, then $\left(x, v_{j}\right)$ are neighbors of (u, v), for $j=1, \ldots, l$ and for all $x \in V_{1}$. Thus, $\operatorname{deg}(u, v)=\operatorname{deg} u \cdot\left|V_{2}\right|+\operatorname{deg} v \cdot\left|V_{1}\right|-\operatorname{deg} u \cdot \operatorname{deg} v$.

Lemma 4.4. Let (u, v) and (x, y) be two vertices of $\Gamma_{1} \oplus \Gamma_{2}$, then

$$
d((u, v),(x, y))= \begin{cases}1, & \text { if }(u, v)(x, y) \in E \\ 2, & \text { otherwise }\end{cases}
$$

Proof. If $(u, v)(x, y) \in E$, obviously they are at distance 1. If they are not adjacent, consider $a \in V_{1} \quad$ and $\quad b \in V_{2} \quad$ such that $\quad u a \in E_{1} \quad$ and $v b \in E_{2}$, thus, $(u, v)(a, b)(x, y)$ is a path. Hence, $d((u, v),(x, y))=2$.

Theorem 4.4. Let $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ be two graphs, with $V_{1}=\left\{u_{1}, \ldots, u_{n_{1}}\right\}, V_{2}=\left\{v_{1}, \ldots, v_{n_{2}}\right\},\left|E_{1}\right|=m_{1}$ and $\left|E_{2}\right|=m_{2}$. If $\Gamma=(V, E)$ is the cartesian sum of Γ_{1} and Γ_{2}, then

$$
\begin{aligned}
S(\Gamma) & =\left(4 n_{2} m_{2}-n_{2}^{3}\right) M_{1}\left(\Gamma_{1}\right)+\left(4 n_{1} m_{1}-n_{1}^{3}\right) M_{1}\left(\Gamma_{2}\right)-M_{1}\left(\Gamma_{1}\right) M_{1}\left(\Gamma_{2}\right) \\
& +4\left(n_{1}^{3} n_{2} m_{2}+n_{2}^{3} n_{1} m_{1}+2 m_{1} m_{2}-4 n_{1} n_{2} m_{1} m_{2}-n_{1}^{2} m_{2}-n_{2}^{2} m_{1}\right) .
\end{aligned}
$$

Proof. First note that the formula for the Schultz index of Γ can be split by taking a sum over all pairs of vertices which form edges and another sum over the rest of pairs of vertices, that is,

$$
S(\Gamma)=\sum_{a b \in E}(\operatorname{deg} a+\operatorname{deg} b) d(a, b)+\sum_{a b \notin E}(\operatorname{deg} a+\operatorname{deg} b) d(a, b) .
$$

Analogous computations to those used for the corona product show that

$$
S(\Gamma)=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} 2 \operatorname{deg}\left(u_{i}, v_{j}\right)\left(n_{1} n_{2}-\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+1\right)\right) .
$$

For the first sum

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2}\left(u_{i}, v_{j}\right)=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(n_{2} \operatorname{deg} u_{i}+n_{1} \operatorname{deg} v_{j}-\operatorname{deg} u_{i} \operatorname{deg} v_{j}\right)^{2} \\
&=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(n_{2}^{2} \operatorname{deg}^{2} u_{i}+n_{1}^{2} \operatorname{deg}^{2} v_{j}+\operatorname{deg}^{2} u_{i} \operatorname{deg}^{2} v_{j}\right. \\
&\left.+2 n_{1} n_{2} \operatorname{deg} u_{i} \operatorname{deg} v_{j}-2 n_{2} \operatorname{deg} v_{j} \operatorname{deg}^{2} u_{i}-2 n_{1} \operatorname{deg} u_{i} \operatorname{deg}^{2} v_{j}\right) \\
&=n_{2}^{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} u_{i}+n_{1}^{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j} \\
&+\sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j} \\
&+2 n_{1} n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg} u_{i} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j}-2 n_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i} \sum_{j=1}^{n_{2}} \operatorname{deg} v_{j} \\
&-2 n_{1} \sum_{i=1}^{n_{1}} \operatorname{deg}_{i} u_{i=1}^{n_{2}} \operatorname{deg}^{2} v_{j} \\
&=n_{2}^{3} \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i}+n_{1}^{3} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}+\sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j} \\
&+8 n_{1} n_{2} m_{1} m_{2}-4 n_{2} m_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i}-4 n_{1} m_{1} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j} \\
&=\left(n_{2}^{3}-4 n_{2} m_{2}\right) M_{1}\left(\Gamma_{1}\right)+\left(n_{1}^{3}-4 n_{1} m_{1}\right) M_{1}\left(\Gamma_{2}\right)+M_{1}\left(\Gamma_{1}\right) M_{1}\left(\Gamma_{2}\right) \\
&+8 n_{1} n_{2} m_{1} m_{2} .
\end{aligned}
$$

And for the second

$$
\begin{aligned}
& \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} 2 \operatorname{deg}\left(u_{i}, v_{j}\right)\left(n_{1} n_{2}-\left(\operatorname{deg}\left(u_{i}, v_{j}\right)+1\right)\right) \\
& \quad=2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}\left(n_{2} \operatorname{deg} u_{i}+n_{1} \operatorname{deg} v_{j}-\operatorname{deg} u_{i} \operatorname{deg} v_{j}\right)\left(n_{1} n_{2}-n_{2} \operatorname{deg} u_{i}\right. \\
& \left.\quad-n_{1} \operatorname{deg} v_{j}+\operatorname{deg} u_{i} \operatorname{deg} v_{j}-1\right) \\
& \quad=2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{1}^{2} n_{2} \operatorname{deg} v_{j}-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{1}^{2} \operatorname{deg}^{2} v_{j}+2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{1} n_{2}^{2} \operatorname{deg} u_{i} \\
& \quad-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} 3 n_{1} n_{2} \operatorname{deg} u_{i} \operatorname{deg} v_{j}+2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} 2 n_{1} \operatorname{deg} u_{i} \operatorname{deg}^{2} v_{j} \\
& \quad-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{1} \operatorname{deg} v_{j}-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{2}^{2} \operatorname{deg}^{2} u_{i}+2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} 2 n_{2} \operatorname{deg}^{2} u_{i} \operatorname{deg} v_{j} \\
& \quad-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} n_{2} \operatorname{deg} u_{i}-2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} u_{i} \operatorname{deg}^{2} v_{j}+2 \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \operatorname{deg} u_{i} \operatorname{deg} v_{j} \\
& \quad=4 n_{1}^{3} n_{2} m_{2}-2 n_{1}^{3} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}+4 n_{1} n_{2}^{3} m_{1}-24 n_{1} n_{2} m_{1} m_{2} \\
& \quad+8 n_{1} m_{1} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}-4 n_{1}^{2} m_{2}-2 n_{1}^{3} \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i}+8 n_{2} m_{2} \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i} \\
& \quad-4 n_{2}^{2} m_{1}-2 \sum_{i=1}^{n_{1}} \operatorname{deg}^{2} u_{i} \sum_{j=1}^{n_{2}} \operatorname{deg}^{2} v_{j}+8 m_{1} m_{2} \\
& \quad=\left(8 n_{1} m_{1}-2 n_{1}^{3}\right) M_{1}\left(\Gamma_{2}\right)+\left(8 n_{2} m_{2}-2 n_{2}^{3}\right) M_{1}\left(\Gamma_{1}\right)+4 n_{1}^{3} n_{2} m_{2}+4 n_{2}^{3} n_{1} m_{1} \\
& \quad-24 n_{1} m_{2}-4 n_{1}^{2} m_{2}-4 n_{2}^{2} m_{1}+8 m_{1} m_{2}-2 M_{1}\left(\Gamma_{1}\right) M_{1}\left(\Gamma_{2}\right) .
\end{aligned}
$$

Taking the sum of these parts we obtain the formula.

5. CONCLUDING REMARKS

In this work we have obtained explicit formulas for the Schultz index of the cartesian, corona and, lexicographic products, as well as of the cartesian sum, we observed that the Schultz index of the first three products can be written in terms of the Schultz and Wiener indices and the order and size of the factors, but for the cartesian sum is different, it involves order, size and, Zagreb index of factors, this it also appears in the formula for the lexicographic product. We noted once again how the close relationship between Schultz and Wiener indices is reaffirmed by their emergence in those expressions.

There are still some questions to be answered; for example, can we find explicit formulas for the Schultz index of some other products of graphs or for other indices?

REFERENCES

1. V. S. Agnes, Degree distance and Gutman index of corona product of graphs, Trans. Comb. 3 (4) (2015) 11-23.
2. A. Alameri, A. Modabish and A. Ayache, New product operation on graphs and it's properties, Int. Math. Forum 11 (8) (2016) 357-368.
3. A. Arivalagan, K. Pattabiraman and V. S. A. Subramanian, Distance based graph invariants of graph operations, Gen. Math. Notes 22 (2) (2014) 143-153.
4. M. Aroziaraj and A. J. Shalini, Extended cut method for edge Wiener, Schultz and Gutman indices with applications, MATCH Commun. Math. Comput. Chem. 76 (2016) 233-250.
5. S. Barik, S. Pati and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (1) (2007) 47-56.
6. D. Bonchev and D. H. Rouvray, Chemical Graph Theory: Introduction and Fundamentals, Abacus Press/Gordon \& Breach Science Publishers, 1991.
7. J. Cao, U. Ali, M. Javaid and C. Huang, Zagreb connection indices of molecular graphs based on operations, Complexity 2020 (2020) 1-15.
8. W. Carballosa, A. De La Cruz and J. M. Rodríguez, Gromov hyperbolicity in lexicographic product graphs, Proc. Indian Acad. Sci. (Math. Sci.) 129 (5) (2019) 1-20.
9. A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. $\mathbf{8}$ (1991) 53-62.
10. I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (5) (1994) 1087-1089.
11. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, CRC Press, Boca Raton, FL, 2011.
12. F. Harary, Graph Theory, Addison-Wesley, Reading MA, Massachusetts, 1969.
13. H. Hosoya. Topological Index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (9) (1971) 2332-2339.
14. R. Khalid and N. Idrees, Wiener and hyper-Wiener index of Dutch windmill graphs, U. P. B. Sci. Bull. 80 (2018) 31-38.
15. S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (5) (1996) 45-49.
16. D. J. Klein, Z. Mihalić, D. Plavšić and N. Trinajstić, Molecular topological index: A relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (4) (1992) 304-305.
17. D. Liu and X. Zhu, Coloring the cartesian sum of graphs, Discrete Math. 308 (24) (2008) 5928-5936.
18. P. Paulraja and V. S. Agnes, Degree distance of product graphs, Discrete Math. Algorithms Appl. 1 (6) (2014) 1-19.
19. H. P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (3) (1989) 227-228.
20. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca. Raton, FL, 1992.
21. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
22. Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26 (3) (2012) 467-472.

[^0]: -Corresponding author (Email: jromv@yahoo.com).

