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In this paper, the radial basis functions (RBFs) method is 
applied to solve the coupled Lane-Emden boundary value 
problems arising in catalytic diffusion reactions. First, we 
multiply the equations by x to overcome the difficulties of the 
singularity at the origin. Then, the Kansa collocation method 
based on radial basis functions is used to approximate the 
unknown functions. By this technique, the problem with 
boundary conditions is reduced to a system of algebraic 
equations. We solve this system and compare the maximal 
residual error with the results previously, which show the 
presented  method is efficient and  produces very accurate 
and rapidly convergent numerical results in considerably low 
computational effort and easy implementation. 
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1. INTRODUCTION 

The Lane-Emden equation is a second-order nonlinear ordinary differential equation that 
describes the temperature variation of a spherical gas cloud under the mutual attraction of 
its molecules that is subject to the classical laws of thermodynamics [1, 2]. This equation 
was first studied by astrophysicists named Jonathan Homer Lane and Robert Emden [3, 4] 
and solved by Aris and Metha as a boundary value problem [5, 6].  
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Lane-Emden equation is used in astrophysics, mathematical physics, biology, and 
biochemistry, such as solidification of a cylindrical, reaction-diffusion process, the theory 
of stellar structure, analysis of the diffusive transport, etc [7, 8]. Due to the widespread use 
of this equation in modeling fundamental problems and the lack of an exact solution of it in 
many cases, plenty of articles have been published that solve it in various methods. In [9] 
Adomian decomposition method (ADM) in the form of a power series was used, and a 
modified decomposition method was applied in [10]. Bender et al. applied a new technique 
called 𝛿 − method [11] and J. H. He obtained an analytical solution of Lane-Emden 
equation by Ritz's method [12]. Series solutions of this equation have been presented as a 
Volterra integral equation in [13] and Homotopy analysis method (HAM) is used by 
Dehghan, Singh et al. [14, 15]. Parand et al. in [16, 17] applied Hermite functions 
collocation method and Rational Legendre pseudospectral approach for solving nonlinear 
differential equations of Lane-Emden type. Also, Parand et al. solved nonlinear Lane-
Emden type equations with unsupervised combined artificial neural networks in [1]. The 
variational iteration method and hybrid function approximations are used by Yildirim, 
Marzban et al. [18, 19]. Recently, a numerical algorithm based upon compact finite 
difference is used by Bisheh-Niasar [20].   

Systems of Lane-Emden equations which are called the coupled of Lane-Emden 
equation, are applied in chemical reactions, population evolution, pattern formation, and 
modeling some of the physical and chemical phenomena [21, 22]. We consider the coupled 
Lane-Emden equation, which is boundary value problem in the following form with 𝑖 =

1, 2: 

𝑢 (𝑥) +  
𝑙

𝑥
𝑢 (𝑥) + 𝑓 (𝑢 (𝑥), 𝑢  (𝑥)) = 0,

𝑢 (0) = 0,            𝑢 (1) = 𝑏  ,                        
                                   (1.1) 

where for 𝑖 = 1, 2, 𝑙 ≥  1, 𝑏  are real constants and 𝑥 ∈ (0,1). 

Several numerical methods have been proposed for solving such systems 
including, the Homotopy analysis method (HAM) by Singh and Wazwaz [23] and 
Adomian decomposition method (ADM) in [2]. A rapid convergence series solution is used 
by the author of [24]. Saadatmandi et al. and Zabihi applied the Chebyshev finite difference 
method (ChFD) in [25, 26]. Also, Sinc-collocation method is presented by Saadatmandi et 
al. [27]. We used meshless methods to solve the coupled of Lane-Emden equation that have 
never been used for solving such systems. In these methods, a set of scattered nodes is used 
in the domain and on its boundaries without the need to generating mesh and it makes 
nodes easily distributed, especially in irregular domains and hence, meshless methods are 
highly flexible with respect to the geometry of the computational domain. Among the 
meshless methods, radial basis functions (RBFs) which lie in the concept of positive 
definite functions are a powerful tool for interpolation and can be considered as 
mathematical parsley since they have been used in all mathematical problems requiring a 
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powerful, i.e. efficient, and stable, approximation tool. RBFs were studied in 1968 by 
Roland Hardy and used for solving differential equations (DEs) by Kansa for the first time 
[28]. This method can get a better approximation than most methods because interpolation 
of scattered data and smooth with some RBFs has spectral accuracy and exponential 
convergence, the error in using them is reduced rapidly. In the last decades, these methods 
have frequently been used for solving ordinary differential equations (ODEs) and partial 
differential equations (PDEs) that appear in mathematical modeling and engineering 
problems and ease of implementation in high dimensions. A lot of articles are provided by 
this method, for example, the meshfree collocation method based on radial basis functions 
(RBFs) [16, 29, 30] and the radial point interpolation method [31]. The interested reader is 
referred to the books by Buhmann [32] and Wendland [33]. 

The most common types of RBFs are listed in Table 1, where 𝑟 = ‖𝑥 − 𝑥 ‖ and the 
positive parameter 𝜀 is named shape parameter. By decreasing the shape parameter, the 
accuracy increases, but the method becomes less stable and vice versa. Optimization of this 
value, which is an open problem, leads to both the accuracy and stability of the method. 
Researchers such as Hardy [34], Franke [35], Rippa [36], Fornberg and Wright [37] and 
Rad et al. [38] have presented ideas to choose an appropriate value for this parameter. 
Although these efforts lead to finding values for the shape parameter, these values depend 
on the specific conditions of the problem. Hence, research continues to find the optimal 
shape parameter. In this paper, the shape parameter is achieved via a trial and error 
approach. 

 Table 1. Some radial basis functions. 

Name of Functions Formulate 
Inverse quadric (IQ) (𝜀 + 𝑟 )  

Inverse multi quadric (IMQ) (𝜀 + 𝑟 ) /  
Multi quadric (MQ) (𝜀 + 𝑟 ) /  

Gaussian (GA) 𝑒  
Hyperbolic secant (SECH) sech(𝜀r) 

 
In the current paper, we approximate the problem by applying the Kansa collocation 

method based on radial basis functions and then solve the resulting algebraic equation 
system. Overall, our focus in this paper is more devoted to providing a high-order accurate, 
computationally fast, convergence, and simple technique to evaluate the coupled Lane-
Emden boundary value problems. 

The remainder of this paper is structured as follows: In the second section, a 
detailed description of our method is presented. In Section 3, the numerical results of two 
test examples are reported and compared with the numerical results of [2, 23] and the 
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results obtained by applying the method in [25, 26] for this problem. Finally, some 
conclusions are mentioned. 

2. METHODOLOGY 

Consider the coupled Lane-Emden equation (1.1) with nonlinear functions as [21], 

                           𝑓 𝑢 (𝑥), 𝑢 (𝑥) = −𝑐 𝑢 (𝑥) − 𝑐 𝑢 (𝑥)𝑢 (𝑥),      𝑖 = 1,2.  

As is clear from system (1.1), the coupled Lane-Emden equation is singular in 𝑥 = 0, and 
this is one of the major difficulty of this type of equations. We multiply both these 
equations by 𝑥, to overcome this difficulty. Thus system (1.1) is rewritten as follows by 
substituting the above 𝑓  and multiplying by 𝑥, 

𝑥𝑢 (𝑥) + 2𝑢 (𝑥) − 𝑐 𝑥𝑢 (𝑥) − 𝑐 𝑥𝑢 (𝑥)𝑢 (𝑥) = 0,

𝑥𝑢 (𝑥) + 2𝑢 (𝑥) − 𝑐 𝑥𝑢 (𝑥) − 𝑐 𝑥𝑢 (𝑥)𝑢 (𝑥) = 0,
                              (2.1) 

subject to the same boundary conditions as mentioned in the previous section: 
     𝑢 (0) = 0,            𝑢 (1) = 𝑏 ,         𝑢 (0) = 0,          𝑢 (1) = 𝑏 ,                          (2.2) 

where 𝑙 , 𝑙  in (1.1) replaced to 2 and 0 <  𝑥 < 1. 

System (2.1) now as a system of nonlinear ordinary differential equations has to be 
solved in each space step. In this section, the Kansa collocation method based on radial 
basis functions is used in both equations to reach an algebraic system of equations. 
Therefore, this section is allocated into two subsections, radial basis functions and 
implementation of the proposed method.  
 

2.1. RADIAL BASIS FUNCTIONS 

Definition 2.1. A function Φ: ℝ → ℝ is called radial if a real-valued function  
𝜙: [0, ∞) → ℝ exists that   Φ(𝑥) = 𝜙(‖𝑥‖),  where ‖. ‖ is usually the Euclidean norm on 
ℝ . 
 

The radial basis functions (RBFs) depend on the radial distance between the data 
points x and the centers 𝑥  and are symmetric around  𝑥  for each 𝑗, hence it can be written 

in the form Φ (x)= 𝜙(||x-𝑥 ||). These functions are divided into three categories [39]: 
 

1. INFINITELY SMOOTH RBFS: The functions of this category which are defined in Table 
1, require tuning a shape parameter. By using these RBFs in numerical computational of 
differential equations, full matrices are created [38-41]. 

2. PIECEWISE SMOOTH RBFS: Piecewise smooth RBFs that are less accurate than the 
basic functions displayed in the category 1, are not infinitely differentiable e.g. conical 
splines  𝜙(𝑟) = 𝑟  , thin plate splines (TPS) 𝜙(𝑟) = (−1) 𝑟 𝑙𝑜𝑔(𝑟), etc [39]. 
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3. COMPACTLY SUPPORTED RBFS: These functions are only non-zero within a radius of 

, and so have sparse derivative matrices. In general, it can be said that these radial basis 

functions are more stable and less accurate than the smooth RBFs [32, 33]. For example, 
Wendland’s, Wu’s and Buhmann’s. 
 
2.1.1. RBF INTERPOLATION AND COLLOCATION METHOD 

Interpolation of the scattered data is referred as the  main objective of the meshless 
methods and is one of the essential problems in the approximation theory and data 
modeling. Suppose {(𝐱 ,𝑦 )}  is a given set of distinct points 𝐱 ∈ ℝ  and their 
corresponding values y ∈ ℝ, we find the continuous function S(x) as an approximation 
solution of 𝑦, where  

𝑆(𝐱 ) = 𝑦 , 𝑖 = 1,2, . . . , 𝑛,                                                         (2.3) 
and consider it as a linear combination of  radial basis functions 𝜙 in the following form, 

 𝑦(𝐱) ≈ 𝑆(𝐱) = ∑ 𝜆 𝜙 𝐱 − 𝐱
𝟐

= ∑ 𝜆 Φ (𝐱)                           (2.4) 

Then, by collocating the recent combination  in 𝐱 , that is substituting these points instead 
of 𝐱 in (2.4) and using (2.3), we get 𝑦 = ∑ 𝜆 Φ (𝐱𝒊), 𝑖 = 1,2, … , 𝑛. By solving this 

system, which is an algebraic system of equations, the unknown coefficients 𝜆  can be 

determined and hence the approximation of the function 𝑦 is obtained. 
 
2.2. IMPLEMENTATION OF PROPOSED METHOD 

First, the functions 𝑢 (𝑥), 𝑙 = 1,2 are approximated by radial basis function Φ as (2.4), 
 𝑢 (𝑥) ≈ 𝑢 (𝑥) = ∑ 𝜆 Φ (𝑥),  𝑙 = 1,2.                                        (2.5) 

Next, the scattered points distributed {𝑥 , 𝑥 , . . . , 𝑥 } in [0,1] are supposed as following,  

   𝑥 = 1 − 𝑐𝑜𝑠 𝜋 , 𝑖 = 1,2, . . . , 𝑛,  

where 𝑥 = 0,   𝑥 = 1. 
 Now, substituting 𝑢 (𝑥), 𝑙 = 1,2 in system (2.1) and collocating the obtained 

system in the points {𝑥} , we have the following absolute residual errors (Res): 

𝑅𝑒𝑠 (𝑥) = 𝑥 𝑢 (𝑥 ) + 2𝑢 (𝑥 ) − 𝑐 𝑥 𝑢 (𝑥 ) − 𝑐 𝑥 𝑢 (𝑥 )𝑢 (𝑥 ),

𝑅𝑒𝑠 (𝑥) = 𝑥 𝑢 (𝑥 ) + 2𝑢 (𝑥 ) − 𝑐 𝑥 𝑢 (𝑥 ) − 𝑐 𝑥 𝑢 (𝑥 )𝑢 (𝑥 ),
                       (2.6) 

where 𝑖 = 2, 3, . . . , 𝑛 − 1.  
 Above system consists of 2𝑛 − 4 equations and 2𝑛 unknowns which using the 
following boundary conditions as added equations to (2.6), is obtained a system of 2𝑛 
equations which by solving it, unknowns can be calculated. 
                                  𝑢 (𝑥 ) = 0,    𝑢 (𝑥 ) = 𝑏 ,     𝑢 (𝑥 ) = 0,    𝑢 (𝑥 ) = 𝑏 .  
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By finding unknown coefficients 𝜆 , 𝑙 = 1,2, approximate solutions 𝑢  and 𝑢  are 

computed. 

3. NUMERICAL RESULTS 

In this section, two particular case of the coupled Lane-Emden problems (2.1)(2.2) are 
considered [2, 23]. The accuracy of our method by using the Gaussian (GA) of RBFs is 
shown in several Tables, and graphs. The results are compared with the numerical solutions 
of [2, 23]. We also obtained the results with the Chebyshev finite difference method 
(ChFD) that is introduced in [25, 26], which has never been used to solve the current 
problem, and put them in some Tables for comparison. The approximated and residual 
error of functions by applying some radial basis functions and with different numbers of 
collocation points are obtained. The examples are as below: 

Example 1. Consider that the following values are substituted in the problem (2.1) and 

conditions (2.2),  𝑐 = 𝑐 = 1,    𝑐 = ,    𝑐 = ,    𝑏 = 1,    𝑏 = 2.  

In Table 2 and Figure 1, the approximated solutions of functions 𝑢 , 𝑢  obtained 
from ADM, HAM, ChFD methods of [2, 23, 25, 26], and the proposed technique with 𝑛 =

7,   𝜀 = 0.05 in the interval [0,1] have been reported. It is clear that the RBF method is in 
good adaptation to the HAM and ADM methods. Also, the absolute residual errors of these 
functions are displayed in Figure 2. and Table 3 The maximum absolute residual error is of 
𝑂(10 ) in the RBF method while it is of 𝑂(10 ), 𝑂(10 ) and 𝑂(10 ) in the ADM, 
HAM and ChFD methods respectively, so the proposed method has good accuracy. 
 
      Table 2. Obtained values of approximated functions by ADM, HAM, ChFD methods 
                     and the present method (with the GA of RBFs and  𝜀 = 0.05, 𝑛 = 7) in 
                     Example 1. 

                      

                               𝑢    
𝑥  ADM method   HAM method   CHFD method     RBF method 

0.0 0.763624868 0.780767047 0.781368743 0.781372911 
0.1 0.765831758 0.782684342 0.783267006 0.783273949 
0.2 0.772463013 0.788465717 0.789001310 0.789006647 
0.3 0.783553024 0.798200840 0.798666754 0.798664977 
0.4 0.799167888 0.812043169 0.812416845 0.812409269 
0.5 0.819418576 0.830215964 0.830476787 0.830470338 
0.6 0.844479370 0.853020705 0.853156774 0.853158195 
0.7 0.874611567 0.880847918 0.880865280 0.880875221 
0.8 0.910192446 0.914190405 0.914122353 0.914133488 
0.9 0.951749513 0.953658877 0.953572904 0.953575814 
1.0 1.000000000 1.000000000 1.000000000 1.000000000 
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Table 2. (Continued) 

 
 
 

  
  

             Figure 1. Graphs of the functions  𝑢 (𝑥) and  𝑢 (𝑥) with ADM,  HAM, ChFD  
                               methods and the GA of RBFs with 𝑛 = 7, 𝜀 = 0.05 in Example 1. 

 

 

                           𝑢    

𝑥  ADM method   HAM method   CHFD method     RBF method 

0.0 1.668215608 1.689598095 1.690662449 1.690667671 
0.1 1.671315683 1.692335084 1.693373144 1.693381877 
0.2 1.680631694 1.700585517 1.701557399 1.701564111 
0.3 1.696214314 1.714469358 1.715342059 1.715339784 
0.4 1.718159052 1.734191780 1.734932268 1.734922655 
0.5 1.746622830 1.760051017 1.760628360 1.760620144 
0.6 1.781847192 1.792449348 1.792842745 1.792844445 
0.7 1.824188148 1.831907230 1.832116803 1.832129258 
0.8 1.874152645 1.879080563 1.879137769 1.879151761 
0.9 1.932441674 1.934781102 1.934755628 1.934759289 
1.0 2.000000000 2.000000000 2.000000000 2.000000000 



246                                                                                                                HAJIOLLOW AND ZABIHI 

 

 

 
             Figure 2. Graphs of the absolute residual errors  𝑢 (𝑥) and  𝑢 (𝑥) with the GA  
                             of RBFs and 𝑛 = 7, 𝜀 = 0.05 in Example 1. 

 

      Table 3. Obtained absolute residual errors by ADM, HAM, ChFD methods and the 
                     present method (with the GA of RBFs and 𝜀 = 0.05, 𝑛 = 7) in Example 1. 

𝑅𝑒𝑠 (𝑥)  

𝒙 ADM method HAM method CHFD method RBF method 
0.0 0.230942914 0.011640586 0.000000000 0.000000000 
0.1 0.226867128 0.011385744 0.000010285 0.000012019 

0.2 0.214888858 0.010641294 0.000210365 0.000019215 
0.3 0.195746198 0.009458900 0.000134203 0.000025298 
0.4 0.170637696 0.007895555 0.000198966 0.000050290 

0.5 0.141171286 0.005967766 0.000474940 0.000000000 
0.6 0.109285297 0.003582957 0.000324541 0.000084744 
0.7 0.077133580 0.000443210 0.000370354 0.000074538 

0.8 0.046923639 0.004085554 0.001082808 0.000109205 
0.9 0.020692579 0.011148438 0.000129675 0.000173217 
1.0 8.4134 E -17             0.022633272 0.005995341 0.001111697 
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Table 3. (Continued) 

 Now, we examine the accuracy of the presented method for approximations 𝑢 , 𝑢  by 
solving the problem for different values of collocation points. Graphs of these functions in 
Figure 3 and results of their maximum residual errors in Table 4 and Figure 4 with 
Gaussian base are displayed. Also, the following criterion with the number of different 
collocation points has been used to show the numerical convergence of the RBF technique. 
Clearly, the accuracy of the solutions increases as 𝑛 increases and the order of maximum 
absolute residual errors reaches 𝑂(10 ) in 𝑛 = 12.  

   𝑟𝑒𝑠 = ∫ (𝑅𝑒𝑠 (𝑥)) 𝑑𝑥 + ∫ (𝑅𝑒𝑠 (𝑥)) 𝑑𝑥. 

  
(a) 𝑢  (b) 𝑢  

 

Figure 3. Graphs of the functions  𝑢 (𝑥)  and  𝑢 (𝑥) with the GA of RBFs and 
                            different values of collocation points of Example 1. 

𝑅𝑒𝑠 (𝑥) 

𝒙 ADM method HAM method CHFD method RBF method 
0.0 0.766598470 0.016249657 0.000000000 0.000000000 
0.1 0.763378418 0.015921395 0.000013021 0.000015028 

0.2 0.754062831 0.014966847 0.000266186 0.000024026 
0.3 0.739676243 0.013466018 0.000169714 0.000031631 
0.4 0.721894603 0.011515827 0.000251441 0.000062867 

0.5 0.702994203 0.009172894 0.000599730 0.000000000 
0.6 0.685772693 0.006368090 0.000409452 0.000105872 
0.7 0.673434203 0.002786970 0.000466795 0.000093078 

0.8 0.669427479 0.002292183 0.001363308 0.000136288 
0.9 0.677221825 0.010214085 0.000163077 0.000216029 

1.0  0.700000000           0.023231283 0.007530095 0.001385391 
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    Table 4. Obtained maximum absolute residual errors and res with GA of RBFs in 
                         Example 1. 
 
 
 
 
 
 
 
 
 

                                                           

 

Figure 4. Graph of the res with the GA of RBFs in Example 1. 
 

As the final experiment, we have used all the functions listed in Table 1 to show the 
impact of the base's functions on the RBF method with 𝑛 =  8. Figure 5 is plotted to show 

𝑛 𝑀𝐴𝑥 𝑅𝑒𝑠 (𝑥) 𝑀𝐴𝑥 𝑅𝑒𝑠 (𝑥) 𝑟𝑒𝑠 

7 0.001111697  0.001385391 0.000361389 

8 0.000137317 0.000168885 0.000039137 

9  0.000018606 0.000022681 0.000004701 

10 0.000002533 0.000003072 0.000000579 

11 0.000000323 0.000000389 - 

12 0.000000043 0.000000051 - 
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an approximation of functions 𝑢 , 𝑢  and Figure 6, is graphs of absolute residual errors. 
Figure 6 indicates that the error order in IQ and IMQ is one, in MQ, two and both SECH 
and GA is of 𝑂(10 ), so the most accuracy with GA and SECH functions and the least 
accuracy of IQ and IMQ bases achieved. 

 

 

 

 
Figure 5. Graphs of the functions 𝑢 (𝑥) and 𝑢 (𝑥) with some of RBFs with 

                               𝑛 = 8 in Example 1. 
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(a) 𝑅𝑒𝑠  (b)  𝑅𝑒𝑠  

  
(c) 𝑅𝑒𝑠  (d)  𝑅𝑒𝑠  

 
         Figure 6. Graphs of the functions 𝑅𝑒𝑠 (𝑥) and 𝑅𝑒𝑠 (𝑥) with some of RBFs and 
                          𝑛 = 8 in Example 1. 

Example 2. The unknown data in the problem mentioned in (2.1) and (2.2) are assumed 
as 𝑐 = 𝑐 = 𝑐 = 𝑐 = 1, 𝑏 = 1, 𝑏 = 2.  The approximate solutions of functions 
𝑢 , 𝑢  are shown in Table 5 and Figure 7. The results are reported using the ADM, HAM, 
ChFD techniques of [2, 23, 25, 26], and the RBF method with 𝑛 = 7,   𝜀 = 0.01 in the 
interval [0,1], indicating that the RBF method is acted better than the ADM, HAM and 
ChFD methods.  Figure 8 and Table 6, are displayed to observe 𝑅𝑒𝑠 , 𝑅𝑒𝑠 , and it can be 
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seen that in the RBF method, maximum error is in 𝑥 = 1 and the errors are of 𝑂(10 ) , 
hence it has a well accuracy compared to ADM, HAM and ChFD methods. 
 

       Table 5. Obtained values of approximated functions by ADM, HAM, ChFD methods 
                      and the present method (with the GA of RBFs and   𝜀 = 0.01, 𝑛 = 7) in   
                      Example 2. 

 

 
 

𝑢   

𝑥 ADM method HAM method CHFD method RBF method 

0.0 0.592658730 0.674423143 0.676513976 0.676526834 
0.1 0.596753063 0.677139742 0.679164176 0.679185633 
0.2 0.609002667 0.685344640 0.687201228 0.687217728 
0.3 0.629317007 0.699206350 0.700811927 0.700806240 
0.4 0.657577333 0.719016401  0.720290027 0.720266142 
0.5 0.693684896 0.745205361 0.746074728 0.746054479 
0.6 0.737628444 0.778365260 0.778789161 0.778794205 
0.7 0.789571015 0.819278422 0.819278884 0.819311572 
0.8 0.849956000 0.868952703 0.868650367 0.868686920 
0.9 0.919632507 0.928663139 0.928309484 0.928318638 
1.0 1.000000000 1.000000000 1.000000000 1.000000000 

 
𝑢  

𝑥 ADM method HAM method CHFD method RBF method 

0.0 1.592658730 1.673518521 1.676513976 1.676526834 
0.1 1.596753063 1.676240889 1.679164176 1.679185633 
0.2 1.609002667 1.684463213 1.687201228 1.687217728 
0.3 1.629317007 1.698354439 1.700811927 1.700806240 
0.4 1.657577333 1.718207120 1.720290027 1.720266142 
0.5 1.693684896 1.744453865 1.746074728 1.746054479 
0.6 1.737628444 1.777690385 1.778789161 1.778794205 
0.7 1.789571015 1.818705108 1.819278884 1.819311572 
0.8 1.849956000 1.868515392 1.868650367 1.868686920 
0.9 1.919632507 1.928410306 1.928309484 1.928318638 
1.0 2.000000000 2.000000000 2.000000000 2.000000000 
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Figure 7. Graphs of the functions 𝑢 (𝑥)  and 𝑢 (𝑥) with ADM, HAM, ChFD 

                             methods and the GA of RBFs with 𝑛 = 7, 𝜀 = 0.01 in Example 2.  
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          Figure 8. Graph of the absolute residual errors 𝑢 (𝑥)  and  𝑢 (𝑥) with the GA 
                           of  RBFs and 𝑛 = 7,   𝜀 = 0.01 of Example 2. 
 

      Table 6. Obtained absolute residual errors by ADM, HAM, ChFD methods and  the 
                     present method (with the GA of RBFs and 𝜀 = 0.01, 𝑛 = 7) of Example 2. 

𝑅𝑒𝑠 (𝑥) 

𝑥 ADM method HAM method CHFD method RBF method 

0.0 1.163185862 0.043719198 0.000000000 0.000000000 
0.1 1.143631002 0.042789989 0.000031868 0.000038266 

0.2 1.086028837 0.040067370 0.000658492 0.000061051 
0.3 0.993549036 0.035715976 0.000424505 0.000080377 
0.4 0.871406768 0.029906016 0.000636200 0.000160106 

0.5 0.726730135 0.022646550 0.001535815 0.000000000 
0.6 0.568313445 0.013530025 0.001061902 0.000272634 
0.7 0.406196710 0.001363158 0.001226923 0.000241846 

0.8 0.250993596 0.016352278 0.003634507 0.000358156 
0.9 0.112865431 0.044140746 0.000441362 0.000575572 

1.0     1.1796 E -16  0.089549318 0.020709797 0.003751641 
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Table 6. (Continued) 
 

 
Graphs of 𝑢 , 𝑢  by the number different collocation points and GA of the RBFs are 

displayed in Figure 9. Also, the maximum residual errors of these functions and the 
criterion 𝑟𝑒𝑠 mentioned in the previous example are shown in Table 7 and Figure 10. With 
more collocation points, we get more accuracy, which indicates the rapid convergence of 
this method, so that for 𝑛 = 12, the order of the maximum absolute residual errors is 
𝑂(10 ).     

 
Table 7. Obtained maximum absolute residual errors and res with GA of RBFs 

                         in Example 2. 
 

 

 
 
 
 
 
 
 
 
 

 

 
 

𝑅𝑒𝑠 (𝑥)   

𝑥 ADM method HAM method CHFD method RBF method 

0.0 0.163185862 0.047175755 0.000000000 0.000000000 
0.1 1.143631002 0.046264512 0.000031868 0.000038266 
0.2 1.086028837 0.043608077 0.000658492 0.000061051 
0.3 0.993549036 0.039407953 0.000424505 0.000080377 
0.4 0.871406768 0.033895791 0.000636200 0.000160106 
0.5 0.726730135 0.027166674 0.001535815 0.000000000 
0.6 0.568313445 0.018923646 0.001061902 0.000272634 
0.7 0.406196710 0.008108600 0.001226923 0.000241846 
0.8 0.250993596 0.007616937 0.003634507 0.000358156 
0.9 0.112865431 0.032593096 0.000441362 0.000575572 
1.0    1.1796 E -16 0.074158043 0.020709797 0.003751641 

𝑛 𝑀𝑎𝑥 𝑅𝑒𝑠 (𝑥) 𝑀𝑎𝑥 𝑅𝑒𝑠 (𝑥) 𝑅𝑒𝑠 

7 0.003751641   0.003751641 0.001077158 

8 0.000682858 0.000682858 0.000173185 

9 0.000109421 0.000109421  0.000024760 

10 0.000018290 0.000018290 0.000003755 

11  0.000002769 0.000002769 - 

12 0.000000439   0.000000439 - 
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Figure 9. Graphs of the functions 𝑢 (𝑥)  and  𝑢 (𝑥) with the GA of RBFs and 

                          different values of collocation points in Example 2. 
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Figure 10. Graph of the res with the GA of RBFs in Example 2. 
 

To illustrate the effect of other basic functions on the RBF method, all the 
functions listed in Table 1 with 𝑛 =  7 have been applied. The approximate functions of 
𝑢 , 𝑢  derived from this examination are plotted in Figure 11, and the graphs of their 
absolute residual errors are displayed in Figure 12. It is clear that the most accuracy is 
related to the GA and SECH functions and the least is the IQ , IMQ, and MQ, respectively. 
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Figure 11. Graphs of the functions 𝑢 (𝑥) and 𝑢 (𝑥) with some of RBFs and 

                             𝑛 = 7 in Example 2. 
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(a) 𝑅𝑒𝑠  (b) 𝑅𝑒𝑠  

  

(c) 𝑅𝑒𝑠  (d) 𝑅𝑒𝑠  
 

            Figure 12. Graphs of the functions 𝑅𝑒𝑠 (𝑥) and 𝑅𝑒𝑠 (𝑥) with some of RBFs  
                               and 𝑛 = 7 in Example 2. 

 

4. CONCLUSION  

In the current paper, an efficient algorithm has been presented to solve the coupled Lane-
Emden boundary value problems. In this problem, there is the singularity at the origin that 
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in first, the equations are multiplied in 𝑥. Next, space dimension is discretized using Kansa 
collocation based on RBF methods. Finally, the obtained nonlinear system of ordinary 
equations is solved. The technique is easy to implement, and the numerical results in 
compared to the results obtained in [2, 23, 25, 26] demonstrate the good accuracy of the 
method. Also, rapid convergence and not require any linearization confirmed that our 
technique is capable. 
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