Original Scientific Paper

Topological Indices of a Kind of Altans

Shima Salimi ${ }^{1}$ And Ali Iranmanesh ${ }^{\text {2, }}{ }^{\boldsymbol{\bullet}}$
${ }^{1}$ Department of Mathematics, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran
${ }^{2}$ Department of Mathematics, Tarbiat Modares University, P.O. Box 14115-137, Tehran, Iran

ARTICLE INFO

Article History:

Received: 3 August 2021
Accepted: 12 September 2021
Published online: 30 September 2021
Academic Editor: Mohammad Reza Darafsheh
Keywords:
Topological index
Altan,
Wiener index
First and second Zagreb indices
$A B C$ index

Abstract

Altans are a class of molecular graphs introduced recently. These graphs are attractive to many chemists and mathematicians. A topological index is a numerical invariant calculated for a description of molecular graphs. In this paper, we compute a few topological indices of Altans such as Wiener index, second Zagreb index, atom-bond connectivity ($A B C$) index, $A B C_{4}$ index, etc.

1. Introduction

In First-time Altans, having been obtained from benzenoids by adding a ring to all outer vertices of valence two [1], were introduced as planner systems. Later, Ivan Gutman generalized altans to arbitrary graphs [3]. In this paper, we follow Gutman's model for altans. Suppose Γ is an arbitrary connected graph of order n, S is a subset of Γ of cardinality k and $V(\Gamma)=\{0,1, \ldots, n-1\}$. Consider $\mathrm{S}_{0}=\{n, n+1, \ldots, n+k-1\}$ and $\mathrm{S}_{1}=\{n+k, n+k+1, \ldots, n+2 k-1\}$. We map the pair (Γ, S) to the pair $\left(\Gamma_{1}, S_{1}\right)$ by adding the cycle C of cardinality $2 k$ with operation $A(G, S)$, where C is the circle $\mathrm{C}=$ $\{n, n+k, n+1, n+k+1, \ldots, n+k-1, n+2 k-1, n\}$. Finally, we attach C to Γ by edges between S and S_{0} of the form $\left(s_{i}, s_{n+i}\right)$ where $0 \leq i \leq k$ and S_{i} is the i-th vertex of
S. The vertices of degree 2 of C are the new peripheral root of the altan; suppose $A(G, S)=$ $\left(\Gamma_{1}, S_{1}\right)$. By continue of this method, iterated altans by $A^{n}(G, S)$, called the n-th altan of (G, S), can be obtained. For example, by considering $\Gamma=C_{6}$ and $S=\{0,1,2,3,4,5\}$, the graph in Figure 1 is extended to the one depicted in Figure 2.

Figure 1. Benzene molecule (C_{6}).

Figure 2. Altan of benzene by considering $S=\{0,1,2,3,4,5\}$.

By continuing to use this method, we can obtain the altan of Figure 3 and finally the altan with n circles.

Figure 3. Altan with n circles.
First, we denote the circles of this altan by $C_{i}, 1 \leq i \leq n$. Also, we mark the vertices of C_{1} by $v_{i, 1}, 1 \leq i \leq 5$, the vertices of C_{2} by $v_{i, 2}$, where $1 \leq i \leq 15$ and finally the vertices of other cycles by $v_{i, j}$, where $1 \leq i \leq 20$ and $1 \leq j \leq n$.

Up to now, many papers published about computation of some topological indices. For example see the references [$6,7,8,9,10,11,12,13]$. In this paper, we compute some topological indices for this kind of altans.

2. Some Topological Indices of Altan

The Wiener index of a connected graph is the sum of all distances between its distinct vertices. In fact, the Wiener index of a connected graph Γ, defined in [5] as:

$$
W(\Gamma)=\frac{1}{2} \sum_{u, v \in V} d(u, v),
$$

where V is the set of vertices of Γ, and $d(u, v)$ is the distance between vertices u and v.

Lemma 1. The sum of all distances between vertices of C_{1} and all other vertices of the altan with n circles such that $n>10$ is denoted by $D\left(C_{1}\right)$ and is equal to $D\left(C_{1}\right)=$ $100 n^{2}-650 n+5545$. For $n \leq 10$, the sum of all distances between vertices of C_{1} and all other vertices of the altan with n circles can be taken from the Table 1 .

Table 1. The sum of all distances between vertices of C_{1} and all other vertices of the altan with n circles, $n \leq 10$.

Number of Cycles	1	2	3	4	5	6	7	8	9	10
$\boldsymbol{D}\left(\boldsymbol{C}_{\mathbf{1}}\right)$	30	245	705	1345	2165	3165	4350	5725	7290	9045

Proof. By using simple computation, it is effortless to obtain the table above. Suppose $n>10$. Since C_{1} is a symmetric pentagon, it would suffice to compute the sum of all distances between $\mathrm{v}_{1,1}$ and other vertices of the altan, and deduce it for other vertices of C_{1}. By using straightforward computation, we can infer that the sum of all distances between $v_{1,1}$ and vertices of C_{1} and C_{2} are 6 and 43 respectively. In Table 1 , the sum of all distances between $v_{1,1}$ and vertices of $C_{i}, 3 \leq i \leq 10$, are specified. Obviously, we can conclude that there is a regular case for distances between $v_{1,1}$ and vertices of $C_{i}, i \geq 11$. Therefore, distances between $v_{1,1}$ and vertices of C_{i+1} can be computed by using the distances between $v_{1,1}$ and vertices of C_{i}.

If i is even, then the distances between $v_{1,1}$ and vertices of $C_{i}, 3 \leq i \leq n$, are as follows :

$$
d\left(v_{1,1}, v_{i, k}\right)= \begin{cases}d\left(v_{1,1}, v_{i, k-1}\right)+1 & \text { If } k \text { is odd } \\ \min \left\{d\left(v_{1,1}, v_{i, k-1}\right), d\left(v_{1,1}, v_{i, k+1}\right)\right\} & \text { If } k \text { is even }\end{cases}
$$

If i is odd, then the distances between $v_{1,1}$ and vertices of $C_{i}, 3 \leq i \leq n$, are as follows:

$$
d\left(v_{1,1}, v_{i, k}\right)= \begin{cases}\min \left\{d\left(v_{1,1}, v_{i, k-1}\right), d\left(v_{1,1}, v_{i, k+1}\right)\right\} & \text { If } k \text { is odd } \\ d\left(v_{1,1}, v_{i, k-1}\right)+1 & \text { If } k \text { is even }\end{cases}
$$

Using by the above relations, the sum of distances between $v_{1,1}$ and other vertices of altan is computed in follow:

$$
\begin{aligned}
D\left(v_{1,1}\right) & =6+43+92+\sum_{i-3}^{5}(i(4+2(i-3))+4(5+2(i-3)) \\
& +(6-i)(6+2(i-3))+10)+\sum_{i-4}^{6}(i(4+2(i-3))+4(5+2(i-3)) \\
& +(6-i)(6+2(i-3)))+\sum_{i-6}^{9}(i(4+2(i-3))+(10-i)(5+2(i-3))+10) \\
& +\sum_{i-6}^{9}(i(4+2(i-3))+(10-i)(5+2(i-3))) \\
& +\sum_{i-10}^{n-1}(i(4+2(i-3))+10)+\sum_{i-11}^{n}(i(4+2(i-3)) \\
& =20 n^{2}-130 n+1109 .
\end{aligned}
$$

Since C_{1} is symmetric, the relations above show that the sum of distances between all vertices of C_{1} and those of altan with n circles such that $n>10$ is $D\left(C_{1}\right)=5\left(20 n^{2}-\right.$ $130 n+1109)=100 n^{2}-650 n+5545$.

Lemma 2. The sum of all distances between vertices of C_{2} and all other vertices which belong to circles $C_{i}, i \geq 2$, of the altan with n circles such that $n>11$ is $D\left(C_{2}\right)=$ $350 n^{2}-460 n-1920$. For $n \leq 11$, the sum of all distances between vertices of C_{2} and all other vertices of the altan with $n \geq 2$ circles can be derived from the Table 2 .

Table 2. The sum of all distances between vertices of C_{2} and all other vertices of the altan with $2 \leq n \leq 11$ circles.

Number of Cycles	2	3	4	5	6	7	8	9	10	11
$\boldsymbol{D}\left(\boldsymbol{C}_{2}\right)$	770	2200	3980	6290	9050	12285	16020	20275	25070	30430

Proof. We divide the vertices of C_{2} in two parts:
The vertices located on interface of hexagons, and those not located on interface of hexagons. Thus, we consider the vertices $v_{2,1}$ and $v_{2,2}$. The sum of all distances between $v_{2,1}$ and vertices of C_{2} is equal to 48 . By using a method similar to Lemma 1 , we can show that the sum of all distances between $v_{2,1}$ and vertices of $C_{i}, 3 \leq i \leq 14$, is as follows:

$$
\begin{aligned}
D\left(v_{2,1}\right) & =48+94+\sum_{i=4}^{6}(16 i-6)+\sum_{i=3}^{5}(16 i+4)+\sum_{i=4}^{6}(17 i-12) \\
& +\sum_{i=6}^{7}(17 i-2)+\sum_{i=8}^{9}(19 i-20)+\sum_{i=7}^{8}(17 i+6) \\
& +\sum_{i=10}^{n}(20 i+24)+\sum_{i=10}^{n-1}(20 i+34)+350 \\
& =30 n^{2}+48 n-440 .
\end{aligned}
$$

The sum of all distances between $v_{2,2}$ and vertices of C_{2} is equal to 53 . Similarly, the sum of all distances between $v_{2,2}$ and vertices of $C_{i}, 3 \leq i \leq 14$, is as follows:

$$
\begin{aligned}
D\left(v_{2,2}\right) & =2008+\sum_{i=12}^{n} 10(2+2(i-3))+\sum_{i=11}^{n-1}(10(2+2(i-3))+10) \\
& =2008+\sum_{i=12}^{n}(20 i-40)+\sum_{i=11}^{n-1}(20 i-30)=20 n^{2}-70 n+28 .
\end{aligned}
$$

Therefore, the sum of all distances between vertices of C_{2} and all other vertices of the altan with n circles is $D\left(C_{2}\right)=5\left(30 n^{2}+48 n-440\right)+10\left(20 n^{2}-70 n+28\right)=$ $350 n^{2}-460 n-1920$.

Lemma 3. The sum of all distances between vertices of C_{3} and all other vertices of $C_{i}, 3 \leq i \leq n$, such that $n>12$ is $D\left(C_{3}\right)=400 n^{2}-200 n+10080$. For $n \leq 12$, the sum of all distances between vertices of C_{3} and all other vertices of the altan with $n \geq 3$ circles can be extracted from Table 3.

Table 3. The sum of all distances between vertices of C_{3} and all other vertices of the altan with $3 \leq n \leq 12$ circles.

Number of Cycles	3	4	5	6	7	8	9	10	11	12
$\boldsymbol{D}\left(\boldsymbol{C}_{\mathbf{3}}\right)$	1980	4400	7280	10660	14580	19080	24200	29980	36460	43680

Proof. We divide the vertices of C_{3} of the form $v_{3, i}$ into two parts where i is either odd or even. Thus, we consider two vertices $v_{3,1}$ and $v_{3,2}$. By employing a method remarkably similar to Lemma 1 and preparing a table such as Table 1, the following results can be achieved:

$$
\begin{aligned}
D\left(v_{31}\right) & =2140+\sum_{i=13}^{n} 10(2(i-3))+\sum_{i=12}^{n-1}(10(2(i-3))+10) \\
& =2140+\sum_{i=13}^{n}(20 i-60)+\sum_{i=12}^{n-1}(20 i-50) \\
& =20 n^{2}-110 n+580 . \\
D\left(v_{32}\right) & =1858+\sum_{i=12}^{n} 10(1+2(i-3))+\sum_{i=12}^{n-1}(10(1+2(i-3))+10) \\
& =1858+\sum_{i=12}^{n}(20 i-50)+\sum_{i=11}^{n-1}(20 i-40) \\
& =20 n^{2}-90 n+428 .
\end{aligned}
$$

Thus the sum of all distances between vertices of C_{3} and all other vertices of $C_{i}, 3 \leq i \leq n$, is $\quad D\left(C_{3}\right)=10\left(20 n^{2}-110 n+580\right)+10\left(20 n^{2}-90 n+428\right)=400 n^{2}-2000 n+$ 10080.

Lemma 4. The sum of all distances between vertices of C_{4} and all other vertices of $C_{i}, 4 \leq i \leq n$, such that $n>13$ is $D\left(C_{4}\right)=400 n^{2}-2800 n+12480$. For $n \leq 13$, the sum of all distances between vertices of C_{4} and all other vertices of the altan with $n \geq 4$ circles can be drawn out from Ttable 4.

Table 4. The sum of all distances between vertices of C_{4} and all other vertices of the altan with $4 \leq n \leq 12$ circles.

Number of Cycles	4	5	6	7	8	9	10	11	12	13
$\boldsymbol{D}\left(\boldsymbol{C}_{4}\right)$	2000	4420	7300	10680	14600	19100	24220	30000	36480	43770

Proof. Similar to Lemma 3, we divide the vertices of C_{4} of the form $v_{4, i}$ into two parts where i is either odd or even. Therefore, we consider two vertices $v_{4,1}$ and $v_{4,2}$. Similar to the previous lemma, the following results can be shown:

$$
\begin{aligned}
D\left(v_{4,1}\right) & =1858+\sum_{i=13}^{n} 10(1+2(i-4))+\sum_{i=12}^{n-1}(10(1+2(i-4))+10) \\
& =1858+\sum_{i=12}^{n}(20 i-70)+\sum_{i=11}^{n-1}(20 i-60)=20 n^{2}-130 n+538 . \\
D\left(v_{4,2}\right) & =2140+\sum_{i=14}^{n} 10(2(i-4))+\sum_{i=13}^{n-1}(10(2(i-4))+10) \\
& =2140+\sum_{i=14}^{n}(20 i-80)+\sum_{i=12}^{n-1}(20 i-70) \\
& =20 n^{2}-150 n+710 .
\end{aligned}
$$

Thus the sum of all distances between vertices of C_{4} and all other vertices of $C_{i}, 4 \leq i \leq n, \quad$ is $\quad D\left(C_{4}\right)=10\left(20 n^{2}-130 n+538\right)+10\left(20 n^{2}-150 n+710\right) \quad=$ $400 n^{2}-2800 n+12480$.

Lemma 5. The sum of all distances between vertices of $C_{k}, k \geq 5$, and all other vertices of $C_{i}, 5 \leq i \leq n$, such that $n>k+9$ is $D\left(C_{i}\right)=400 n^{2}-2800 n+12480$. For $n \leq k+9$, the sum of all distances between vertices of C_{k} and all other vertices of the altan with $n \geq k$ circles can be obtained from Table 5 .

Table 5. The sum of all distances between vertices of C_{k} and all other vertices of the altan with $k \leq n \leq k+9$ circles and $k \geq 5$.

Number of Cycle	k	$k+1$	$k+2$	$k+3$	$k+4$	$k+5$	$k+6$	$k+7$	$k+8$	$k+9$
$\boldsymbol{D}\left(\boldsymbol{C}_{\boldsymbol{k}}\right)$	2000	4420	7300	10680	14600	19100	24220	30000	36480	43770

Proof. By having considered the figure of the altan and computed all distances between vertices of $C_{k}, k \geq 5$, and all other vertices of $C_{i}, 5 \leq i \leq n$, the following results are yielded:

If k is odd, then we have $D\left(v_{k, i}\right)=D\left(v_{4, i+1}\right)$ and if k is even, then $D\left(v_{k, i}\right)=$ $D\left(v_{4, i}\right)$. Since the number of vertices $v_{k i}$ where i is even is equal to vertices $v_{k i}$ where i is odd, the result is confirmed.

By using the above lemmas for each case, we can compute the Wiener index. The second Zagreb index of Γ is defined as $M_{2}(\Gamma)=\sum_{u v \in E(\Gamma)} d(u) d(v)$, where $d(u)$ is the degree of vertex u.

Proposition 6. Let Γ be the altan in Figure 3. The second Zagreb index of Γ is $M_{2}(\Gamma)=$ $270 n-375$.

Proof. The number of vertices of Γ is $|V|=5+15+\sum_{i=3}^{n} 20=20 n-20$. The sum of all degrees of vertices of Γ where $\mathrm{n}>1$ is $\sum_{v \in V(\Gamma)} d(v)=5 \times 3+15 \times 3+$
$\sum_{i=3}^{n-1}(20 \times 3)+10 \times 3+10 \times 2=60 n-70$. Thus, the cardinality of edges of Γ is $|E|=\frac{1}{2} \sum_{v \in V(\Gamma)} d(v)=30 n-35$. Therefore, the second Zagreb index of Γ is $M_{2}(\Gamma)=$ $9(30 n-55)+20 \times 6=270 n-375$.

The first and the second product Zagreb index of Γ is denoted by $P M_{1}(\Gamma)$ and $P M_{2}(\Gamma)$ respectively and defined as $P M_{1}(\Gamma)=\prod_{u v \in E(\Gamma)}(d(u)+d(v))$ and $P M_{2}(\Gamma)=$ $\prod_{u v \in E(\Gamma)} d(u) d(v)[2,4]$.

Proposition 7. The first and the second product Zagreb index of Γ are

$$
P M_{1}(\Gamma)=6^{(30 n-55)} \times 5^{20}, P M_{2}(\Gamma)=3^{(90 n-145)} \times 2^{20} .
$$

Proof. Γ has $30 n-55$ edges with vertices of degree 3 and 20 edges in circle C_{n} such that one edge is of degree 2 and the other one is of degree 3 . So we have $P M_{1}(\Gamma)=$ $(3+3)^{(30 n-55)} \times(2+3)^{20}=6^{(30 n-55)} \times 5^{20} \quad$ and $\quad P M_{2}(\Gamma)=(3 \times 3)^{(3 n-55)} \times$ $(2 \times 3)^{20}=3^{(90 n-145)} \times 2^{20}$.

$$
\text { Set } M_{r, s}(\Gamma)=\sum_{u, v \in V}\left(d(u)^{r} d(v)^{s}+d(v)^{r} d(u)^{s}\right)
$$

Proposition 8. $M_{r, s}(\Gamma)=60 \times 3^{r} 3^{s} n-1103^{r} 3^{s}+20\left(3^{r} 2^{s}+2^{r} 3^{s}\right)$.
Proof. Since Γ has $30 n-55$ edges with vertices of degree 3 and 20 edges in circle C_{n} such that one edge is of degree 2 and the other edge is of degree 3 , the $M_{r, s}(\Gamma)$ index of Γ is $\quad M_{r, s}(\Gamma)=2 \times 3^{r} 3^{s}(30 n-55)+20\left(3^{r} 2^{s}+2^{r} 3^{s}\right)=\left(60 \times 3^{r} 3^{s} n-1103^{r} 3^{s}+\right.$ $20\left(3^{r} 2^{s}+2^{r} 3^{s}\right)$.

The atom-bond connectivity $(A B C)$ index [8] is defined as

$$
A B C(\Gamma)=\sum_{u v \in E(\Gamma)} \sqrt{\left(\frac{d(u)+d(v)-2}{d(u) d(v)}\right)} .
$$

Proposition 9. The $A B C$ index of Γ is $A B C(\Gamma)=20 n-\frac{110}{3}+10 \sqrt{2}$.
Proof. By argument similar to the above mentioned theorem, we have $A B C(\Gamma)=$ $(30 n-55) \sqrt{\frac{3+3-2}{3 \times 3}}+20 \sqrt{\frac{3+2-2}{3 \times 2}}=20 n-\frac{110}{3}+10 \sqrt{2}$.

The $A B C_{4}(\Gamma)$ index is defined as

$$
A B C_{4}(\Gamma)=\sum_{u v \in E(\Gamma)} \sqrt{\left(\frac{s(u)+s(v)-2}{s(u) s(v)}\right)}
$$

where $s(u)$ and $s(v)$ are the sum of all vertices which adjacent to u and v respectively.

Proposition 10. The $A B C_{4}$ index of Γ is $A B C_{4}(\Gamma)=\frac{40}{3} n-\frac{260}{9}+10 \sqrt{\frac{14}{63}}+20 \sqrt{\frac{11}{42}}$.
Proof. By argument similar to Theorem 8, we can show that $A B C_{4}(\Gamma)=(30 n-65) \times$ $\sqrt{\frac{9+9-2}{9 \times 9}}+10 \sqrt{\frac{9+7-2}{9 \times 7}}+20 \sqrt{\frac{6+7-2}{6 \times 7}}=\frac{40}{3} n-\frac{260}{9}+10 \sqrt{\frac{14}{63}}+20 \sqrt{\frac{11}{42}}$.

ACKNOWLEDGMENTS. The authors would like to thank the referee for carefully reading and giving some fruitful suggestions

REFERENCES

1. N. Basic and T. Pisanski, Iterated altans and their properties, MATCH Commun. Math. Comput. Chem. 74 (2015) 645-658.
2. M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative version of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217-230.
3. I. Gutman, Altan derivatives of a graph, Iranian J. Math. Chem. 5 (2) (2014) 85-90.
4. I. Gutman and K. C. Das, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 50 (2004) 103-112.
5. S. Hayat and M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014) 213-228.
6. M. Javaid, M. U. Rehman and J. Cao, Topological indices of rhombus type silicate and oxide networks, Canadian J. Chem. 95 (2) (2017) 134-143.
7. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs. Discrete Appl. Math. 156 (10) (2008) 1780-1789.
8. J.-B. Liu, S. Wang, C. Wang and S. Hayat, Further results on computation of topological indices of certain networks, IET Control Theory Appl. 11 (13) (2017) 2065-2071.
9. B. Rajan, A. William, C. Grigorious and S. Stephen, On certain topological indices of silicats, Honeycomb and hexagonal networks, J. Comp. \& Math. Sci. 3 (5) (2012) 530-535.
10. M. Rosary, C. J. Deeni and D. Antony Xavier, Computing stone topological indices of triangular silicate network, Proc.Int. Conf. Appl. Math. Theor.Comput. Sci. 2013.
11. A. Soltani and A. Iranmanesh, The hyper edge-Wiener index of corona product of graphs, Trans. Combin. 4 (3) (2015) 1-9.
12. A. Soltani, A. Iranmanesh and Z. A. Majid, The edge Wiener type of topological indices, Util. Math. 91 (2013) 87-98.
13. A. Soltani, A. Iranmanesh and Z. A. Majid, The multiplicative version of the edge Wiener index, MATCH Commun. Math. Comput. Chem. 71 (2014) 407-416.
