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The resolvent matrix is a matrix with this property that all of its 
eigenvalues are outside the spectra of G. In this paper, we study the 
exponential growth of the resolvent matrix of a graph G. The 
exponential growth of resolvent energy of graph G was established.  
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1. INTRODUCTION  

The resolvent matrix of a given matrix ܣ of finite (or infinite) order is defined as ܴ =
ܫ ߞ) −  is the unit matrix. Its well-known ܫ is a complex (or real) number and ߞ ଵ whereି(ܣ
that the relationship between the resolvent matrix and the power of ܣ can be represented by 

Taylor series such as (ܫ ߞ − ଵି(ܣ = ∑ ஺ೖ

఍ೖశభ
ஶ
௞ୀ଴ .                                                

In what follows, by ܩ we mean a graph of order ݊, ܸ(ܩ) ,ଵݒ}= ,ଶݒ … . ,  ௡} is the setݒ
of vertices and (ܩ)ܧ ,ݑ,ଵݑ }= …  we mean the (0,1) ,(ܩ)ܣ ௡} is the set of edges. Byݑ,
adjacency matrix of ܩ. The set of eigenvalues of (ܩ)ܣ is said to be the spectrum of ܩ. Let 
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(ܩ)ଵߣ ≤ (ܩ)ଶߣ ≤ ⋯ ≤  ଵ is called the spectral radius. Letߣ the largest eigenvalue ,(ܩ)௡ߣ
݉ ௠,௡ be a space ofܯ × ݊ complex matrices. A matrix norm is a positive function ||. || 
defined on ܯ௠,௡ such that: (a) ||ܣ|| = 0 if and only if ܣ = 0; (b) ||ܿܣ|| =  for ||ܣ|| |ܿ|
every complex number ܿ and (c) ||ܣ + ||ܤ ≤ ||ܣ|| + ܤ,ܣ for every ||ܤ|| ∈ ௠,௡ܯ . A max-
norm is an example of matrix norm defined as ||ܣ||௠௔௫: = max௜,௝หܽ௜௝ห for any matrix 
ܣ ≔ ൣܽ௜,௝൧. 

In this paper, Section 1 devotes to study the resolvent of (ܩ)ܣ and obtain its 
exponential growth with finite order and normal type in term of matrix norm. In Section 2, 
we will give a condition under which the norm of the resolvent of the adjacency matrix 
 grows exponentially. In Section 3, we introduce the exponential growth of the (ܩ)ܣ
resolvent energy of a graph ܩ and establish its lower bound. In Section 4, computational 
studies to the resolvent energy of exponential growth were provided.  
 
2. EXPONENTIAL GROWTH OF THE RESOLVENT OF (ࡳ)࡭ 

Theorem 2.1. Let ܩ be a graph of order ݊ and (ܩ)ܣ be its adjacency matrix. The resolvent 
of ܩ holds exponential growth with finite order ߛ and normal type ߤ such as  

ܫ ߞ)|| − ଵ||௠௔௫ି((ܩ)ܣ ≤ ఓ(|ఒ|ିଵ)షം,  for ቚఒ݁ܥ
௡
ቚ < 1 

where ܥ is a constant, only if the norm of the power of its adjacency matrix ||ܣ௡(ܩ)||,݊ ∈
ܰ holds exponential growth with finite order 0 < ߚ < 1 and normal type ߱ > 0 such as 

௠௔௫||(ܩ)௡ܣ|| ≤ ߛ ఠ௡ഁ, where݁ ܥ = ఉ
ଵିఉ

ߤ ݀݊ܽ   = (ఉఠ)ഁ

ఊ
.                                                         

To prove theorem, we need to provide brief introduction to the theory of entire 
function with the following peculiarities: 

1. Entire function with variable ଵ
ଵି௫

; 

2. For ݔ → 1, the quantity 1 − is equivalent to −ln x ݔ = ln ଵ
௫

=:  .ݐ
Let ݂(ݔ) > 0 be a function defined for 0 < ݔ < 1. The phenomena of order with 

ݔ → 1, can be introduced with scale ݁ఘ(ଵି௫)షഀ . We say that the function ݂(ݔ) is of finite 
order (precisely, finite exponential order), if there exists a constant ߙ such that  

(ݔ)݂ ≤ ݁(ଵି௫)షഀ ଴ݔ                < ݔ < 1.        
In particular, the lower bound of those ߙ's, is called the order of the function ݂ and 

denote by ߛ(݂). The order of ݂ can be obtained by 

(݂)ߛ = − lımതതതത
௫→ଵ

ln ln݂(ݔ)
ln(1 − (ݔ .   

Moreover, let ݂ be entire function of finite order ߛ(݂) > 0. If there exists a constant ߟ > 0 
such that  

(ݔ)݂         ≤ ݁ఎ(ଵି௫)షഀ ଴ݔ                < ݔ < 1. 
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The lower bound of those ߟ 's, is called the type of function ݂ and denote by ߩ(݂). 
Its well-known that if ߩ(݂) > 0, then the function ݂ holds normal type. The type of 
function ݂ of finite order ߛ(݂) can be obtained by  

(݂)ߩ = − lımതതതത
௫→ଵ

ln(݂)
(1 − ఊି(ݔ . 

Similarly, one can definite the order and type of any sequence of numbers such as 
߶௡ = ݁ఠ(௡)ഁ, where ߚ,߱ > 0 are the order and the type of ߶௡ , respectively. For more 
details about entire function, we refer to [5]. One more object needed to prove Theorem 
2.1, is the Legendre transformation. The Legendre transformation is given by (see [6]): 

݂∗ = (sup௫ ݏݔ − ∗݃ ;((ݔ)݂ = (sup௦ ݏݔ −  .((ݏ)݃
It is well-known that evaluation of the Legendre transformation (in short, LT.) is 

given by (݂∗)∗(ݔ) =  .(ݔ)݂
 
Lemma 2.1. The Legendre transformation of the function: 

ఊ݂(ݐ) = ൝
1
ߛ ݐ

ିఊ              ݐ > 0

ݐ                 ∞+ ≤ 0
 

is 

                                              ݃ఉ(ݏ) = ቊ
ିଵ
ఉ

ݐ              ఉ(ݏ−) > 0
ݐ                       ∞+ > 0

                                           (1) 

Proof. By definition of LT., we have ݂∗(ݏ) = sup௧ ݏݐ]  − [(ݐ)݂ = sup௧வ଴ ቂݏݐ −
ଵ
ఊ

ఊቃିݐ  . 

Obviously, ఊ݂∗(ݏ) = +∞ for ݏ > 0. On the other hand, for ݏ < 0, we have  
ݐ =  ଵ/(ఊାଵ)ି(ݏ−)

and  

 ఊ݂∗(ݏ) = ݏଵ/(ఊାଵ)ି(ݏ−) − ଵ
ఊ
൤−ିݏ

భ
ംశభ൨

ିఊ
= − ଵ

ఉ
 ,ఉ(ݏ−)

where ߚ = ఊ
ଵାఊ

.                                                                                                                        ■ 

 
Corollary 2.1. Let ఊ݂(ݐ) be a function defined in Equation (1). Then for ܥ > 0, the 
Legendre transformation of function ݂(ݐ) =  is (ݐ)ఊ݂ ܥ

(ݏ)∗݂ =  ଵିఉܥ
ఊ݂
(ݏ)∗ = ൝ −

಴భ
ംశభ

ఉ
ݏ       ≤ 0

ݏ            ∞+ > 0
.   

Proof. The proof follows from Lemma 2.1 and definition of the Legendre transformation of 

a function ݂ multiplied by ܥ > 0 such as [݂ܥ]∗(ݏ) = ∗݂ ܥ ቀ௦
஼
ቁ.                                            ■ 
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Theorem 2.2. Let ߮(ݖ) = ∑ ߮௡ݖ௡ஶ
଴  be an analytical function. The function ߮(ݖ) holds 

finite order ߛ > 0 and normal type ߩ > 0, only if the sequence of coefficients ߮௡ has finite 

order 0 < ߚ < 1 and normal type ߱ > 0, where ߛ = ఉ
ଵିఉ

 and ߩ = (ఉఠ)ഁ

ఊ
. 

Proof. Without lose of generality, we assume that for ߛ, ߩ > 0, the function ߮(ݎ) satisfies 
the following inequality 

(ݎ)ఝܯ ≤ ݁ఘቀ
ଵ
௥ቁ

షം

. 
It is well known that the coefficients hold the Cauchy inequality such as |߮௡| ≤

ெക(ೝ)

௥೙
. From the above inequality, we have ln|߮௡| ≤ ݃௡(ݐ) ≔ ఊିݐߩ +  Thus .ݐ݊

 ln|߮௡| ≤ min௧[ିݐߩఊ + [ ݐ݊ = max௧ ቂ−݊ݐ −
ఘఊ
ఊ
ఊቃିݐ . 

The quantity max௧ ቂ−݊ݐ −
ఘఊ
ఊ
ఊቃ is the Legendre transformation of function ఘఊିݐ

ఊ
 ఊିݐ

given in Lemma 2.1 at point ݏ = −݊. Therefore, Corollary 2.1 and Lemma 2.1 imply that 

ln|߮௡| ≤ ߛߩൣ− ఊ݂൧
∗(−݊) = ఘఊ

భ
ംశభ

ఉ௡ഁ
. 

This implies that the order of ߮௡ is 

lim
௡

ln ln
|߮௡|
ln݊ ≤ ߚ =

ߛ
ߛ + 1 

and the type is 

lim
௡

ln |߮௡|
݊ఉ ≤ ߱ =

(ߛߩ)
ଵ

ఊାଵ

ߚ .  

Now, the proof is a consequence of Lemma 2.1 for ቚఒ
௡
ቚ < 1.                                                 ■ 

 
3. EXPONENTIAL GROWTH OF RESOLVENT ENERGY 

The energy of graph is the sum of absolute values of the eigenvalues of (ܩ)ܣ, i.e. (ܩ)ܧ =
∑ ௜|୬ߣ|
௜ୀଵ . This graph invariant has important applications in chemical graph theory and had 

been extensively studied. For more details, we refer to [1,2,3] and [10]. Let's remind that 
the kth spectral moment of graph ܩ is ܯ௞(ܩ) = ∑ ௞୬(௜ߣ)

௜ୀଵ , with ܯ଴ = ଵܯ,݊ = ଶܯ,0 =
2݉ and ܯ௞ = 0 for all odd values of ݇ if and only if ܩ is bipartite, see [4] for details. 

Estrada and Higham in [7] was proposed an invariant of graphs based on Taylor 
series expansion of spectral moments terms such as ܩ)ܧܧ, ܿ) = ∑ ܿ௞ܯ௞(ܩ).ஶ

௞ୀ଴  The series 
above have been investigated with the following ܿ௞. For ܿ௞ = ଵ

௞!
, the ܩ)ܧܧ, ܿ) is called 

Estrada index; 
I. For ܿ௞ = ଵ

(௡ିଵ)ೖ
, the ܧܧ௥(ܩ, ܿ) is called Estrada resolvent index; 
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II. For ܿ௞ = ଵ
௡

, the ܩ)ܴܧ, ܿ) is called the resolvent energy. 
The index numbered by I is a graph-spectrum-based invariant found by Estrada in 

[8], which provided 3D geometric characteristics of biologically, while the index numbered 
by II was established by Estrada and Higham in [7] with noteworthy applications, both in 
biochemistry and in complex networks.  

The eigenvalues of the resolvent matrix of (ܩ)ܣ are ଵ
఍ିఒ೔

,     ݅ = 1,2, … ,݊.  Note 

that the eigenvalues of resolvent matrix are lies outside the spectrum of ܩ. In [9], the 
resolvent energy of ܩ was defined as  (ܩ)ܴܧ = ∑ |(݊ − ௜)ିଵ|௡ߣ

௜ୀଵ , Here, we will consider 
the exponential growth of the resolvent energy of graph ܩ. Let ߛ, ߤ > 0, we say that the 
resolvent of graph ܩ has exponential growth of finite order ߛ and normal type ߤ, if it is 
satisfied the following 
(ܩ)ఊఓܴܧ                                                  = ∑ ݁|ఓ(௡ିఒ೔)షം|௡

௜ୀଵ .                                            (2) 
Theorem 3.1. Let ܩ be an (݊,݉)-graph. Then the exponential resolvent energy holds the 
following lower bound: 

(ܩ)ఊఓܴܧ ≥ exp[ߤ (n ln݊)ିఊ] − exp[ߤ(݊ ln 2݉)ିఊ], 
where ߤߛ > 0.  
 
Proof. According to Equation (2), we have 
(ܩ)ఊఓܴܧ                                   = ∑ ݁|ఓ(௡ିఒ೔)షം|௡

௜ୀଵ . 

                                                  = ∑ ∑ | (ఓ(௡ିఒ೔)షം)ೖ

௞!
|௡

௜ୀଵ
ஶ
௞ୀ଴  

     = ∑ ∑ ቚൣఓ
ೖ௡షೖം((ଵିఒ೔)షം)ೖ൧

௞!
ቚ௡

௜ୀଵ
ஶ
௞ୀ଴  

      = ∑ ∑ |
[ఓೖ௡షೖം൬൬୪୬೙

ഊ೔
൰
షം
൰
ೖ

]

௞!
|௡

௜ୀଵ
ஶ
௞ୀ଴  

            = ∑ ∑ | [ఓೖ௡షೖം(୪୬௡ି୪୬ ఒ೔)షംೖ]
௞!

|௡
௜ୀଵ

ஶ
௞ୀ଴ . 

For any positive integer ߟ the following inequality is satisfied 
,ݔ)݂  (ݕ = (lnݔ − lnݕ)ఎ > (ln ଶ)ఎݔ − (lnݕଶ)ఎ. 

Consequently, ܴܧఊఓ(ܩ) ≥ exp[ߤ (n ln݊)ିఊ] − exp[ߤ(݊ ln 2݉)ିఊ].                                   ■ 
 

Simply one can check the following:  
  
Corollary 3.1 Let ܩ be a graph of order ݊. For ߛ, ߤ > 0, the following statements are hold: 
 

I. (ܩ)ܴܧ  ;(ܩ)ఊఓܴܧ >
II. If ߣଵ > 1 is the greatest eigenvalue of (ܩ)ܣ and ܯଶ(ܩ) = 2݉, then we have 

ߛ  > ୪୬ ୪୬ ఒభ
୪୬ ଶ௠ି୪୬௡

       and     ߤ > ୪୬ ୪୬ ఒభ
ఊ(୪୬ ଶ௠ି୪୬ ௡)

. 
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4. COMPUTATIONAL STUDIES ON EXPONENTIAL RESOLVENT ENERGY 

For better understanding to the properties of the exponential growth of resolvent energy of 
graphs, we have undertaken extensive computer-aided studies. The ܴܧఊఓ-values of all trees 
and connected unicyclic, and bicyclic graphs up to 15 vertices were computed, and the 
structure of the extremal members of these classes was established. For ߤߛ > 0, studies are 
the following observations. Note that the studies here are related to the computational 
studies in [9] and [11] and the below graphs were plotted in the mentioned references.   
 
1. Among trees of order ݊, the path ௡ܲ has smallest and the tree ௡ܲ

∗ second-smallest 
exponential resolvent energy ܴܧఊఓ. Among trees of order ݊, the star ܵ௡ has greatest and 
the tree ܵ௡∗  second-greatest exponential resolvent energy ܴܧఊఓ. These graphs are 
depicted in Figures 1,2. 
 

Figure 1. Trees with extremal exponential resolvent energy of type ௡ܲ , ௡ܲ
∗. 

 

 
 

Figure 2. Trees with extremal exponential resolvent energy of type ܵ௡ , ܵ௡∗. 
 

 
 

2. Among connected unicyclic graphs of order ݊, (݊ ≤ 4), the cycle ܥ௡ has smallest and 
the graph ܥ௡∗ second-smallest exponential resolvent energy ܴܧఊఓ. Among these graphs 
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of order ݊, (݊ ≤ 5), the graphs ݊ ܺ௡ and ܺ௡∗  have, respectively, greatest and second-
greatest exponential resolvent energy ܴܧఊఓ. These graphs are depicted in Figures 3, 4. 
 

Figure 3. Unicyclic graphs with extremal exponential resolvent energy of type ܥ௡  .∗௡ܥ,
 

 
 

Figure 4. Unicyclic graphs with extremal exponential resolvent energy of type ܺ௡ ,ܺ௡∗ . 
 

 
 
3.  Among connected bicyclic graphs of order ݊, those with the smallest exponential 

resolvent energy ܴܧఊఓ  are: ܤ௣ିଵ,௣ିଵ,௣ ݂݅ ݊ = ;݌3 ݌ ≥ ݊ ݂݅ ௣ିଵ,௣,௣ܤ,2 = ݌3 + ݌;1 ≥
݊ ݂݅ ௣,௣,௣ܤ ݀݊ܽ 2 = ݌3 + ݌;2 ≥ 1. The graphs with second-smallest exponential 
resolvent energy ܴܧఊఓ  are ܤ௣ିଶ,௣,௣ ݂݅ ݊ = ;݌3 ݌ ≥ ݊ ݂݅ ௣ିଵ,௣ିଵ,௣ାଵܤ,2 = ݌3 + ݌;1 ≥
݊ ݂݅ ௣ିଵ,௣,௣ାଵܤ ݀݊ܽ 2 = ݌3 + ݌;2 ≥ 1. Among these graphs of order ݊; ݊ ≥ 5, the 
graph ௡ܻ has greatest exponential resolvent energy ܴܧఊఓ. For ݊ ≥ 9, the graph ௡ܻ

∗ has 
second-greatest exponential resolvent energy ܴܧఊఓ, where ହܻ

∗ , ଺ܻ
∗ , ଻ܻ 

∗   and  ଼ܻ∗ are 
exceptions. Those graphs are depicted in Figure 5.  
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Figure 5. Bicyclic graphs with extremal exponential resolvent energy. 

 

Comparing the studies above with the investigation in [9] and [11], one can verify 
that for any of the above considered graphs, we have (ܩ)ܴܧ ⊂ (ீ)௥ܧܧ ⊂  for (ܩ)ଵ,ఓܴܧ
ߤ > 0, for example, ܴܧ(ܥ଺∗) = (∗଺ܥ)௥ܧܧ ,1.0464 = 6.4387 and ܴܧଵ,ଶ(ܥ଺∗) = 7.1498 
while for any ߛ,ߤ > 0, we have (ܩ)ܴܧ ⊂ (ܩ)ఊ,ఓܴܧ  ⊂ (∗଺ܥ)ଷ଴଴,ଶܴܧ ௥(ீ), seeܧܧ = 6. 

5. CONCLUSION  

In this paper, we studied the exponential growth of the resolvent of graph ܩ in term of max-
norm and the relationship between the max-norm of resolvent and power of matrix (ܩ)ܣ. 
Resolvent energy of graphs shows very important application in chemical graph theory and 
network complex, in Section 4, we applied the exponential growth of the resolvent of graph 
 to resolvent energy. The exponential growth of resolvent energy shows rapid growth for ܩ
special case, then the results obtained in [9] and [11]. In this work still there are open 
questions, like, studying the relationship between the exponential resolvent energy and the 
Estrada index and Estrada resolvent index. 
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