IRANIAN JOURNAL OF

On the Characteristic Polynomial and the Spectrum of the Terminal Distance Matrix of Kragujevac Trees

Abbas Heydari ${ }^{\circ}$

Department of Science, Arak University of Technology, Arak, Iran

```
ARTICLE INFO
Article History:
    Received: 28 April 2021
    Accepted: 15 May 2021
    Published online: 30 June 2021
    Academic Editor: Tomislav Došlić
```

 Keywords:
 Kragujevac trees
 Characteristic polynomial
 Terminal distance matrix
 Spectral radius
 Keywords:
Kragujevac trees
Characteristic polynomial Terminal distance matis Spectral radius

> ABSTRACT
> In this paper, the characteristic polynomial and the spectrum of the terminal distance matrix of some special types of Kragujevac trees is computed. As an application, we obtain an upper bound and a lower bound for the spectral radius of the terminal distance matrix of the Kragujevac trees.

1. INTRODUCTION

Let G be a simple connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. For vertices $v_{1}, v_{2} \in V(G)$, we denote by $d\left(v_{1}, v_{2}\right)$ the topological distance (i.e., the number of edges on the shortest path) joining the two vertices of G. The square matrix of order n whose (i, j) entry is $d\left(v_{i}, v_{j}\right)$ is called the distance matrix of G.

A connected acyclic graph is called a tree. The number of vertices of a tree is its order. The terminal distance matrix or reduced distance matrix is defined for (molecular)

[^0]trees [1]. Let T be a tree of order n with k pendent vertices (vertices of degree one), labeled by $v_{1}, v_{2}, \ldots, v_{k}$, then $T D(T)$ the terminal distance matrix of T, is the square matrix of order k whose (i, j) entry is $d\left(v_{i}, v_{j}\right)$ for $1 \leq i, j \leq k$.

Terminal distance matrices were used in the mathematical modeling of proteins and genetic codes [2, 3, 5], and were proposed to serve as a source of a whole class of molecular-structure descriptors [3, 4].

A rooted tree is a tree in which one particular vertex is distinguished, this vertex is referred to as the root (of the rooted tree). In order to define the Kragujevac trees, we first explain the structure of its branches [6].

Definition 1.1. Let P_{3} be the 3 -vertex tree, rooted at one of its terminal vertices. For $k=2,3, \ldots$ construct the rooted tree B_{k} by identifying the roots of k copies of P_{3}. The vertex obtained by identifying the roots of P_{3}-trees is the root of B_{k}.

Examples illustrating the structure of the rooted tree B_{k} are depicted in Figure 1.

Figure 1. The rooted trees B_{2}, B_{3}, and B_{k} in the Definition 1.1.
Definition 1.2. Let $d \geq 2$ be an integer. Let $B_{1}, B_{2}, \ldots, B_{d}$ be the rooted trees specified in Definition 1.1. A Kragujevac tree T is a tree possessing a vertex of degree d, adjacent to the roots of $B_{1}, B_{2}, \ldots, B_{d}$. This vertex is said to be the central vertex of T, whereas d is the degree of T. The subgraphs $B_{1}, B_{2}, \ldots, B_{d}$ are the branches of T (See Figure 2). Recall that some (or all) branches of T may be mutually isomorphic. If all branches of T are isomorphic, then T is called regular Kragujevac tree. We will denote by $T_{k, d}$ a regular Kragujevac tree with d branches isomorphic to B_{k}.

The class of Kragujevac trees emerged in several studies addressed to solve the problem of characterizing the tree with minimal atom-bond connectivity index [7,8].

Suppose that $G=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a sequence of simple graphs and H is a simple graph of order n. For $i=1,2, \ldots, n$, choose a vertex x_{i} as the rooted vertex of G_{i}. The graph obtained by identifying x_{i} and i-th vertex of H is denoted by $H(G)$ and is called
the rooted product of H by G [9]. If P_{1} is the tree of order $1, S_{d+1}$ is the star graph of order $d+1$ and $G=\left\{P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right\}$, then the Kragujevac tree which is described in Definition 1.2, can be constructed by the rooted product of S_{d+1} by G as follows:

$$
\mathrm{T}=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)
$$

Figure 2. The graph of $T_{3,4}$, a regular Kragujevac tree of order 29 of degree 4.

Let A be a square matrix and \bar{A} be the square matrix obtained from A, by deleting the first row and the first column. Suppose that $E_{m, n}$ denotes the $m \times n$ matrix whose $(1,1)$ entry is 1 and others are 0 . If $|A|$ denotes the determinant of square matrix A, then the following theorem obtain a method for computation of the characteristic polynomial of the rooted product of graphs [9].

Theorem 1.1. Let $A_{n_{1}}, A_{n_{2}}, \ldots, A_{n_{k}}$ be symmetric matrices of order $n_{1}, n_{2}, \ldots, n_{k}$ respectively. If

$$
X=\left[\begin{array}{cccc}
A_{n_{1}} & E_{n_{1} n_{2}} & \cdots & E_{n_{1} n_{k}} \\
E_{n_{2} n_{1}} & A_{n_{2}} & \cdots & E_{n_{2} n_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n_{k} n_{1}} & E_{n_{k} n_{2}} & \cdots & A_{n_{k}}
\end{array}\right] \text {, then }|X|=\left|\begin{array}{cccc}
\left|A_{n_{1}}\right| & \left|\overline{A_{n_{1}}}\right| & \cdots & \left|\overline{A_{n_{1}}}\right| \\
\left|\overline{A_{n_{2}}}\right| & \left|A_{n_{2}}\right| & \cdots & \left|\overline{A_{n_{2}}}\right| \\
\vdots & \vdots & \ddots & \vdots \\
\left|\overline{A_{n_{k}}}\right| & \left|\overline{A_{n_{k}}}\right| & \cdots & \left|A_{n_{k}}\right|
\end{array}\right| \text {. }
$$

In this paper, we compute the characteristic polynomial and the spectrum of the terminal distance matrix of $T_{k, d}$ in terms of positive integers d and k. As an application, we obtain an upper bound and a lower bound for the spectral radius of the terminal distance matrix of the Kragujevac trees.

2. Characteristic Polynomial

In this section, the characteristic polynomial of the terminal distance matrix of some special types of Kragujevac trees is calculated by use of Theorem 1.1. For this purpose the terminal distance matrix of these trees must be written in a suitable form of a block matrix.

If $B_{k_{i}}$ for $1 \leq i \leq d$ is one of the branches of the Kragujevac tree $\mathrm{T}=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)$, then the terminal distance matrix of $B_{k_{i}}$ is given as

$$
T D\left(B_{k_{i}}\right)=\left[\begin{array}{cccc}
0 & 4 & \ldots & 4 \\
4 & 0 & \ldots & 4 \\
\vdots & \vdots & \ddots & \vdots \\
4 & 4 & \ldots & 0
\end{array}\right]_{k_{i} \times k_{i}}
$$

If $C_{k_{i} \times k_{j}}$ is a $k_{i} \times k_{j}$ matrix whose all entries equal to 6 , the terminal distance matrix of T is given as follows:

$$
T D(T)=\left[\begin{array}{cccc}
T D\left(B_{k_{1}}\right) & C_{k_{1} \times k_{2}} & \ldots & C_{k_{1} \times k_{d}} \\
C_{k_{2} \times k_{1}} & T D\left(B_{k_{2}}\right) & \ldots & C_{k_{2} \times k_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
C_{k_{d} \times k_{1}} & C_{k_{d} \times k_{2}} & \ldots & T D\left(B_{k_{d}}\right)
\end{array}\right]_{d \times d}
$$

By subtracting the first row from the other rows, and then subtracting the first column of $C_{k_{i} \times k_{j}}$ from the other columns of this matrix, we can transform $C_{k_{i} \times k_{j}}$ to $6 E_{k_{i} \times k_{j}}$ (whose $(1,1)$ entry is 6 and other entries are equal to 0). If D_{i} for $1 \leq i \leq d$, denotes the square matrix which is obtained by applying the used linear transformations to transform $C_{k_{i} \times k_{j}}$ to $6 E_{k_{i} \times k_{j}}$ on $T D\left(B_{k_{i}}\right)$, we have

$$
T D(T)=\left[\begin{array}{cccc}
D_{1} & 6 E_{k_{1} \times k_{2}} & \ldots & 6 E_{k_{1} \times k_{d}} \\
6 E_{k_{2} \times k_{1}} & D_{2} & \ldots & 6 E_{k_{2} \times k_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
6 E_{k_{d} \times k_{1}} & 6 E_{k_{d} \times k_{2}} & \ldots & D_{d}
\end{array}\right]_{d \times d}
$$

Since $\operatorname{det}\left(\lambda I-T D\left(B_{k_{i}}\right)\right)=\operatorname{det}\left(\lambda I-D_{i}\right)$, if $\Phi_{B_{k_{i}}}(\lambda)$ denotes the characteristic polynomial of $T D\left(B_{k_{i}}\right)$ and $\bar{\Phi}_{B_{k_{i}}}(\lambda)=\operatorname{det}\left(\bar{D}_{l}\right)$ for $1 \leq i \leq d$, then by using Theorem 1.1, the characteristic polynomial of the terminal distance matrix of T is given as

$$
\Phi_{T}(\lambda)=\left|\begin{array}{cccc}
\Phi_{B_{k_{1}}}(\lambda) & -6 \bar{\Phi}_{B_{k_{1}}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k_{1}}}(\lambda) \tag{1}\\
-6 \bar{\Phi}_{B_{k_{2}}}(\lambda) & \Phi_{B_{k_{2}}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k_{2}}}(\lambda) \\
\vdots & \vdots & \ddots & \vdots \\
-6 \bar{\Phi}_{B_{k_{d}}}(\lambda) & -6 \bar{\Phi}_{B_{k_{d}}}(\lambda) & \ldots & \Phi_{B_{k_{d}}}(\lambda)
\end{array}\right|_{d \times d}
$$

To compute Equation (1), we need to calculate the determinant of a special type of square matrices which is introduced in the following lemma.

Lemma 2.1. If the main diagonal of a square matrix contains d_{1} variable x and d_{2} variable y and the other entries are -6 , then

$$
\begin{aligned}
& =\left|\begin{array}{cccccccc}
x & -6 & \cdots & -6 & \cdots & -6 & \cdots & -6 \\
-6 & x & \cdots & -6 & \cdots & -6 & \cdots & -6 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & -6 \\
-6 & -6 & \cdots & x & -6 & -6 & \cdots & -6 \\
-6 & -6 & \cdots & -6 & y & -6 & \cdots & -6 \\
-6 & -6 & \cdots & -6 & -6 & y & \cdots & -6 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-6 & -6 & \cdots & -6 & -6 & -6 & \cdots & y
\end{array}\right| \\
& =(x+6)^{d_{1}-1}(y+6)^{d_{2}-1}\left[x\left(y-6\left(d_{2}-1\right)\right)-6\left(d_{1}-1\right) y-36\left(d_{1}+d_{2}-1\right)\right] .
\end{aligned}
$$

Proof. The lemma can be proved by induction on $n=d_{1}+d_{2}$.

Theorem 2.2. Let $k, d \geq 2$ be positive integers. The characteristic polynomial of the terminal distance matrix of the regular Kragujevac tree is computed as:

$$
\Phi_{T_{k, d}}(\lambda)=(\lambda+4)^{d(k-1)}(\lambda+2 k+4)^{d-1}(\lambda-k(6 d-2)+4) .
$$

Proof. Let B_{k} be one of the branches of $T_{k, d}$. The characteristic polynomial of $T D\left(B_{k}\right)$ is given as follows:

$$
\Phi_{B_{k}}(\lambda)=\left|\begin{array}{cccc}
\lambda & -4 & \ldots & -4 \tag{2}\\
-4 & \lambda & \ldots & -4 \\
\vdots & \vdots & \ddots & \vdots \\
-4 & -4 & \ldots & \lambda
\end{array}\right| \begin{aligned}
& k \times k
\end{aligned}=(\lambda+4)^{k-1}(\lambda-4(k-1)) .
$$

On the other hand, if M denotes the obtained determinant from $\Phi_{B_{k}}(\lambda)$ by subtracting the first row from the other rows and then subtracting the first column from the other columns of $\Phi_{B_{k}}(\lambda)$, then $\bar{\Phi}_{\beta_{k}}(\lambda)=\operatorname{det}(M)$. Hence

$$
\bar{\Phi}_{B_{k}(\lambda)}=(\lambda+4)^{k-1}\left|\begin{array}{cccc}
-2 & -1 & \ldots & -1 \tag{3}\\
-1 & -2 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \ldots & -2
\end{array}\right|_{(k-1) \times(k-1)}=k(\lambda+4)^{k-1}
$$

By Equation (1), the characteristic polynomial of the terminal distance matrix of $T_{k, d}$ is given as follows:

$$
\Phi_{T_{k, d}}(\lambda)=\left|\begin{array}{cccc}
\Phi_{B_{k}}(\lambda) & -6 \bar{\Phi}_{B_{k}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) \\
-6 \bar{\Phi}_{B_{k}}(\lambda) & \Phi_{B_{k}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) \\
\vdots & \vdots & \ddots & \vdots \\
-6 \bar{\Phi}_{B_{k}}(\lambda) & -6 \bar{\Phi}_{B_{k}}(\lambda) & \ldots & \Phi_{B_{k}}(\lambda)
\end{array}\right|_{d \times d} .
$$

Now by use of Lemma 2.1, we get

$$
\begin{aligned}
\Phi_{T_{k, d}}(\lambda) & =\left(\bar{\Phi}_{B_{k}}(\lambda)\right)^{d}\left(\frac{\Phi_{B_{k}}(\lambda)}{\bar{\Phi}_{B_{k}}(\lambda)}+6\right)^{d-1}\left(\frac{\Phi_{B_{k}}(\lambda)}{\bar{\Phi}_{B_{k}}(\lambda)}-6(d-1)\right) \\
& =\left(\Phi_{B_{k}}(\lambda)+6 \bar{\Phi}_{B_{k}}(\lambda)\right)^{d-1}\left(\Phi_{B_{k}}(\lambda)-6(d-1) \bar{\Phi}_{B_{k}}(\lambda)\right) \\
& =(\lambda+4)^{d(k-1)}(\lambda+2 k+4)^{d-1}(\lambda-k(6 d-2)+4) .
\end{aligned}
$$

Therefore, the proof is completed.
Corollary 2.3. The spectrum of the terminal distance matrix of $T_{k, d}$ contains the integer numbers, -4 with multiplicity $d(k-1),-2 k-4$ with multiplicity $d-1$, and a positive integer equal to $k(6 d-2)-4$.

In what follows, we compute the characteristic polynomial of the terminal distance matrix of two special types of Kragujevac trees which are used in the next section.

Theorem 2.4. Let $k, d \geq 2$ be positive integers. The characteristic polynomial of the terminal distance matrix of $T=S_{d+1}\left(P_{1}, B_{k}, B_{2}, \ldots, B_{2}\right)$, the Kragujevac tree which one of its branches is B_{k} and other branches are B_{2}, is given as follows:

$$
\Phi_{T}(\lambda)=(\lambda+4)^{d+k-2}(\lambda+8)^{d-2}\left(\lambda^{2}-(4 k+12 d-24) \lambda-8 k(3 d+1)-16(3 d-5)\right) .
$$

Proof. By Equation (1), we have

$$
\begin{aligned}
\Phi_{\mathrm{T}}(\lambda) & =\left|\begin{array}{cccc}
\Phi_{B_{k}}(\lambda) & -6 \bar{\Phi}_{B_{k}}(\lambda) & \cdots & -6 \bar{\Phi}_{B_{k}}(\lambda) \\
-6 \bar{\Phi}_{B_{2}}(\lambda) & \Phi_{B_{2}}(\lambda) & \cdots & -6 \bar{\Phi}_{B_{2}}(\lambda) \\
\vdots & \vdots & \ddots & \vdots \\
-6 \bar{\Phi}_{B_{2}}(\lambda) & -6 \bar{\Phi}_{B_{2}}(\lambda) & \cdots & \Phi_{B_{2}}(\lambda)
\end{array}\right| \\
& =\bar{\Phi}_{B_{k}}(\lambda)\left(\bar{\Phi}_{B_{2}}(\lambda)\right)^{d-1}\left|\begin{array}{cccc}
\Phi_{B_{k}}(\lambda) & -6 & \cdots & -6 \\
\bar{\Phi}_{B_{k}}(\lambda) & & & \\
-6 & \Phi_{B_{2}}(\lambda) & \cdots & -6 \\
& \bar{\Phi}_{B_{2}}(\lambda) & & - \\
\vdots & \vdots & \ddots & \vdots \\
-6 & -6 & \cdots & \frac{\Phi_{B_{2}}(\lambda)}{\bar{\Phi}_{B_{2}}(\lambda)}
\end{array}\right| .
\end{aligned}
$$

Now, by applying Lemma 2.1, we get

$$
\begin{aligned}
\Phi_{\mathrm{T}}(\lambda) & =\bar{\Phi}_{B_{k}}(\lambda)\left(\bar{\Phi}_{B_{2}}(\lambda)\right)^{d-1}\left(\frac{\Phi_{B_{2}}(\lambda)}{\bar{\Phi}_{B_{2}}(\lambda)}+6\right)^{d-2}\left(\frac{\Phi_{B_{k}}(\lambda)}{\bar{\Phi}_{B_{k}}(\lambda)}\left(\frac{\Phi_{B_{2}}(\lambda)}{\bar{\Phi}_{B_{2}}(\lambda)}-6(d-2)\right)-36(d-1)\right) \\
& =\left(\Phi_{B_{2}}(\lambda)+6 \bar{\Phi}_{B_{2}}(\lambda)\right)^{d-2}\left(\Phi_{B_{k}}(\lambda)\left(\Phi_{B_{2}}(\lambda)-6(d-2) \bar{\Phi}_{B_{2}}(\lambda)\right)-36(d-1) \bar{\Phi}_{B_{2}}(\lambda) \bar{\Phi}_{B_{k}}(\lambda)\right) .
\end{aligned}
$$

The result now follows from replacing $\Phi_{B_{k}}(\lambda), \bar{\Phi}_{B_{k}}(\lambda), \Phi_{B_{2}}(\lambda)$ and $\bar{\Phi}_{B_{2}}(\lambda)$ from Equations (2) and (3).

Theorem 2.5. Let $k, d \geq 2$ be positive integers. The characteristic polynomial of the terminal distance matrix of $T=S_{d+1}\left(P_{1}, B_{k+1}, \ldots, B_{k+1}, B_{k} \ldots, B_{k}\right)$, a Kragujevac tree of degree d with d_{1} branches equal to B_{k+1} and $d-d_{1}$ branches equal to B_{k} is given as follows:

$$
\begin{aligned}
\Phi_{T}(\lambda)= & (\lambda+4)^{(\mathrm{k}-1) d+d_{1}}(\lambda+2 k+6)^{d_{1}-1}(\lambda+2 k+4)^{d-d_{1}-1} \\
& \left(\lambda^{2}-\left(6 d k-4 k+6 d_{1}-10\right) \lambda-(12 d-4) k^{2}-(36 d-20) k-24\left(d_{1}-1\right)\right)
\end{aligned}
$$

Proof. By Equation (1), $\Phi_{T}(\lambda)$ is given as follows:

$$
\left|\begin{array}{cccccc}
\Phi_{B_{k+1}}(\lambda) & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \\
\vdots & \vdots & \vdots & \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \\
-6 \bar{\Phi}_{B_{k+1}}(\lambda) & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \ldots & \Phi_{B_{k+1}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k+1}}(\lambda) \\
-6 \bar{\Phi}_{B_{k}}(\lambda) & -6 \bar{\Phi}_{B_{k}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) & \ldots & \Phi_{B_{k}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-6 \bar{\Phi}_{B_{k}}(\lambda) & -6 \bar{\Phi}_{B_{k}}(\lambda) \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) & \ldots & -6 \bar{\Phi}_{B_{k}}(\lambda) & \ldots \\
\Phi_{B_{k}}(\lambda)
\end{array}\right|
$$

Now, by use of Lemma 2.1, we have

$$
\begin{aligned}
& \Phi_{\mathrm{T}}(\lambda)=\left(\bar{\Phi}_{B_{k+1}}(\lambda)\right)^{d_{1}}\left(\bar{\Phi}_{B_{k}}(\lambda)\right)^{d-d_{1}}\left(\frac{\Phi_{B_{k+1}}(\lambda)}{\bar{\Phi}_{B_{k+1}}(\lambda)}+6\right)^{d_{1}-1} \times \\
&\left.\left(\frac{\Phi_{B_{k}}(\lambda)}{\bar{\Phi}_{B_{k}}(\lambda)}+6\right)^{d-d_{1}-1} \int \frac{\Phi_{k+1}(\lambda)}{\bar{\Phi}_{B_{k+1}}(\lambda)}\left(\frac{\Phi_{k}(\lambda)}{\Phi_{B_{k}}(\lambda)}-6\left(d-d_{1}-1\right)\right)-6\left(d_{1}-1\right) \frac{\Phi_{k}(\lambda)}{\bar{\Phi}_{B_{k}}(\lambda)}-36(d-1)\right) \\
&=(\lambda+4)^{(\mathrm{k}-1) d+d_{1}}(\lambda+2 k+6)^{d_{1}-1}(\lambda+2 k+4)^{d-d_{1}-1} \times \\
&\left(\lambda^{2}-\left(6 d k-4 k+6 d_{1}-10\right) \lambda-(12 d-4) k^{2}-(36 d-20) k-24\left(d_{1}-1\right)\right) .
\end{aligned}
$$

This completes the proof.

2. Spectral RadiUs

In this section, we obtain a lower bound and an upper bound for the spectral radius of Kragujevac trees of order n. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the Perron vector and ρ be the spectral radius of the terminal distance matrix of $T=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)$. The components of X which are correspond to the pendant vertices of $B_{k_{i}}$ are equal, so we will denote these components by $x_{k_{i}}$ for $1 \leq i \leq d$.

Lemma 3.1. If $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the Perron vector of the terminal distance matrix of $T=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)$ and $k_{i}>k_{j}$ for some $1 \leq i, j \leq d$, then $x_{k_{i}}<x_{k_{j}}$.

Proof. If ρ denotes the spectral radius of T, then by use of the eigenvalue equation, we get $T D(T) X=\rho \mathrm{X}$. Thus

$$
\begin{gather*}
\boldsymbol{\rho} \boldsymbol{x}_{\boldsymbol{k}_{\boldsymbol{i}}}=\mathbf{4}\left(\boldsymbol{k}_{\boldsymbol{i}}-\mathbf{1}\right) \boldsymbol{x}_{\boldsymbol{k}_{\boldsymbol{i}}}+\mathbf{6} \boldsymbol{k}_{\boldsymbol{j}} \boldsymbol{x}_{\boldsymbol{k}_{\boldsymbol{j}}}+\cdots+\mathbf{6} \boldsymbol{k}_{\boldsymbol{d}} \boldsymbol{x}_{\boldsymbol{k}_{\boldsymbol{d}}} . \tag{4}\\
\rho x_{k_{j}}=6 k_{i} x_{k_{i}}+4\left(k_{j}-1\right) x_{k_{j}}+\cdots+6 k_{d} x_{k_{d}} . \tag{5}
\end{gather*}
$$

By subtracting Equation (4) from Equation (5) we have

$$
\left(\rho+4+2 k_{i}\right) x_{k_{i}}=\left(\rho+4+2 k_{j}\right) x_{k_{j}}
$$

Since $k_{i}>k_{j}$, hence $\mathrm{x}_{\mathrm{k}_{\mathrm{i}}}<\mathrm{x}_{\mathrm{k}_{\mathrm{j}}}$.

Now let in $T=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right), k_{i}$ has maximum value and k_{j} has minimum value among branches of T. If $k_{i}-1>k_{j}$, then we denote by T^{*}, the Kragujevac three which is obtained from T by replacing $B_{k_{i}}$ with $B_{k_{i}-1}$ and replacing $B_{k_{j}}$ with $B_{k_{j}+1}$. The spectral radius of $T D(T)$ and $T D\left(T^{*}\right)$ will be compared in the following lemma.

Lemma 3.2. If ρ and ρ^{*} are the spectral radius of $T D(T)$ and $T D\left(T^{*}\right)$ respectively, then $\rho^{*}>\rho$.

Proof. Let D and D^{*} denote the terminal distance matrix of T and T^{*} respectively and X be the Perron vector of D. By use of the eigenvalue equation we get

$$
\begin{align*}
X^{t}\left(D^{*}-D\right) X & =2\left(4 k_{j} x_{k_{i}} x_{k_{j}}+6\left(k_{i}-1\right) x_{k_{i}}^{2}-4\left(k_{i}-1\right) x_{k_{i}}^{2}-6 k_{j} x_{k_{i}} x_{k_{j}}\right) \\
& =4 x_{k_{i}}\left(\left(k_{i}-1\right) x_{k_{i}}-k_{j} x_{k_{j}}\right) \tag{6}
\end{align*}
$$

If $m=\sum_{i=1}^{d} k_{i}$, then by use of Equation (4) we get

$$
\begin{equation*}
\rho x_{k_{i}}>4\left(k_{i}-1\right) x_{k_{i}}+6 k_{j} x_{k_{i}}+6\left(m-k_{i}-k_{j}\right) x_{k_{i}} \Rightarrow \rho+4>6 m-2 k_{i} . \tag{7}
\end{equation*}
$$

By subtracting Equations (4) and (5) we have

$$
\rho\left(x_{k_{j}}-x_{k_{i}}\right)=\left(2 k_{i}+4\right) x_{k_{i}}-\left(2 k_{j}+4\right) x_{k_{j}} \Rightarrow\left(\rho+4+2 k_{i}\right) x_{k_{i}}=\left(\rho+4+2 k_{j}\right) x_{k_{j}} .
$$

Hence,

$$
\left(k_{i}-1\right) x_{i}-k_{j} x_{j}=\left(k_{i}-1\right) x_{i}-k_{j} \frac{\rho+4+2 k_{i}}{\rho+4+2 k_{j}} x_{i}=\frac{(\rho+4)\left(k_{i}-1-k_{j}\right)-2 k_{j}}{\rho+4+2 k_{j}} x_{i}
$$

Since $k_{i}-1-k_{j}>1$, by use of Equation (7), we get

$$
\begin{equation*}
\left(k_{i}-1\right) x_{i}-k_{j} x_{j}>\frac{6 m-2 k_{i}-2 k_{j}}{\rho+4+2 k_{j}} x_{i}>0 \tag{8}
\end{equation*}
$$

Now by using Equations (6) and (8) we have $X^{t}\left(D^{*}-D\right) X>0$ and from Riley equation, we get $\rho^{*} \geq \frac{X^{t} D^{*} X}{X^{t} X}>\frac{X^{t} D X}{X^{t} X}=\rho$. Therefore, the proof is completed.

Let $k, d \geq 2$ be positive integers. In continue we suppose that

$$
r=\left\lfloor\frac{n-d-1}{2 d}\right\rfloor \text { and } d_{1}=\frac{n-(2 r+1) d-1}{2} .
$$

If T is a Kragujevac tree of order n with degree d, then d_{1} is an positive integer.

Theorem 3.3. Among Kragujevac trees of order n and degree d, the terminal distance matrix of the Kragujevac tree with d_{1} branches isomorphic to B_{r+1} and $d-d_{1}$ branches isomorphic to B_{r}, has maximum value of the spectral radius.

Proof. Let $T=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)$ be a Kragujevac tree of order n and degree d with maximum value of spectral radius. By use of Lemma 3.2, $\left|k_{i}-k_{j}\right| \leq 1$, for $1 \leq$ $i, j \leq d$. Hence, $k_{i}=\left\lfloor\frac{n-d-1}{2 d}\right\rfloor$ or $k_{i}=\left\lceil\frac{n-d-1}{2 d}\right\rceil$, for $1 \leq i \leq d$. This completes the result.

Corollary 3.4. If ρ is the spectral radius of the terminal distance matrix of a Kragujevac tree of order n and degree d, then

$$
\rho \leq r(3 \mathrm{~d}-2)+3 d_{1}-5+\sqrt{9 r^{2} d^{2}+18 r d d_{1}+6 r\left(d-2 d_{1}\right)+3 d_{1}\left(3 d_{1}-2\right)+1} .
$$

Proof. By using Theorem 3.3, if $T=S_{d+1}\left(P_{1}, B_{r+1}, \ldots, B_{r+1}, B_{r} \ldots, B_{r}\right)$, then $T D(T)$ has maximum value of the spectral radius. Now by use of Theorem 2.5, ρ_{T} is the largest root of the equation $\lambda^{2}-\left(6 d r-4 r+6 d_{1}-10\right) \lambda-(12 d-4) r^{2}-(36 d-20) r-24\left(d_{1}-1\right)=$ 0 . Hence $\rho_{T}=r(3 \mathrm{~d}-2)+3 d_{1}-5+\sqrt{9 r^{2} d^{2}+18 r d d_{1}+6 r\left(d-2 d_{1}\right)+3 d_{1}\left(3 d_{1}-2\right)+1}$. Thus the corollary is proved.

Theorem 3.5. Among Kragujevac trees of order n and degree d, if $k=\frac{n-5 d+3}{2}$ and $T=S_{d+1}\left(P_{1}, B_{k}, B_{2}, B_{2} \ldots, B_{2}\right)$, then $T D(T)$ has minimum value of the spectral radius.

Proof. Let $T=S_{d+1}\left(P_{1}, B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{d}}\right)$ be a Kragujevac tree of order n and degree d with minimum value of spectral radius. If $k_{i}=2$, for $1 \leq i \leq d$, then the result of theorem is proved. Let for example $k_{1}>2$. If $k_{i}>2$, for $2 \leq i \leq d$, then by using Lemma 3.2, we
can obtain a Kragujevac tree of order n and degree d form T with larger spectral radius than ρ_{T}, which is a contradiction. Hence $k_{i}=2,2 \leq i \leq d$, and the theorem is proved.

Corollary 3.6. Let ρ be the spectral radius of the terminal distance matrix of a Kragujevac tree of order n and degree d. Then

$$
\rho \geq 2 k+6 d-12+2 \sqrt{(k+3 d)^{2}+2 k(3 d-5)-8(3 d-2)}
$$

Proof. By use of Theorem 2.4, if $T=S_{d+1}\left(P_{1}, B_{k}, B_{2}, B_{2} \ldots, B_{2}\right)$, then ρ_{T} is the greatest root of the following equation:

$$
\lambda^{2}-(4 k+12 d-24) \lambda-8 k(3 d+1)-16(3 d-5)=0
$$

Hence, $\rho_{T}=2 k+6 d-12+2 \sqrt{(k+3 d)^{2}+2 k(3 d-5)-8(3 d-2)}$. We now apply Theorem 3.5 to deduce the result.

REFERENCES

1. I. Gutman, B. Furtula and M. Petrović, Terminal Wiener index, J. Math. Chem. 46 (2009) 522-531.
2. B. Horvat, T. Pisanski and M. Randić, Terminal polynomials and star-like graphs, Match Commun. Math. Comput. Chem. 60 (2008) 493-512.
3. M. Randić, J. Zupan and D. Vikić-Topić, On representation of proteins by star-like graphs, J. Mol. Graph. Modell. 26 (2007) 290-305.
4. E. A. Smolenskii, E. V. Shuvalova, L. K. Maslova, I. V. Chuvaeva and M. S. Molchanova, Reduced matrix of topological distances with a minimum number of independent parameters: distance vectors and molecular codes, J. Math. Chem. 45 (2009) 1004 - 1020.
5. D. Xiaotie and J. Zhang, Equiseparability on terminal Wiener index, Appl. Math. Letters 25 (3) (2012) 580-585.
6. R. Cruz, I. Gutman and J. Rada, Topological indices of Kragujevac trees, Proyecciones J. Math. 33 (4) (2014) 471-482.
7. S. A. Hosseini, M. B. Ahmadi and I. Gutman, Kragujevac trees with minimal atombond connectivity index, Match Commun. Math. Comput. Chem. 71 (2014) 5-20.
8. I. Gutman, Kragujevac trees and their energy, Sci. Publ. State Univ. Novi Pazar Ser. A: Appl. Math. Inform. and Mech. 6 (2) (2014) 71-79.
9. A. Heydari and B. Taeri, On the characteristic polynomial of a special class of graphs and spectra of balanced trees, Linear Algebra Appl. 429 (2008) 1744-1757.

[^0]: -Corresponding Author: heydari@arakut.ac.ir
 DOI: 10.22052/IJMC.2021.242219.1559

