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In this paper, we consider a stochastic Selkov model for the 

glycolysis process. The stochasticity in the model is introduced 

by parameter perturbation which is a standard technique in 

stochastic mathematical modeling. First, we employ polar 

coordinate transformation and stochastic averaging method to 

transform the original system into an Itô averaging diffusion 

system. Next, we investigate the stochastic dynamical 

bifurcation of the Itô averaging amplitude equation by studying 

the qualitative changes of invariant measures and explore the 

phenomenological bifurcation (P-bifurcation) by using the 

counterpart Fokker-Planck equation. Finally, some numerical 

simulations are presented to verify our analytic arguments. 
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1. INTRODUCTION 

A process that provided the energy for cellular metabolism by breaking down the glucose 

is named glycolysis [1, 2]. This process involves several steps where glucose decompose 

through formations of glucose-6-phosphate followed by fructose-6-phosphate (F6P), 

which converted to fructose-1,6-diphosphate under the influence of an allosteric enzyme 

named phosphofructokinase [1]. 

Higgins in 1964 introduced mathematical equations to interpret the dynamics of 

the glycolysis [3]. Selkov in 1968 introduced an autocatalytic model for the glycolysis 

which was simple model. This model has understandable form of a complicated reaction 
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[4]. In Selkov model, the activation of phosphofructokinase (PFK) is considered to take 

place by adenosine diphosphate (ADP) [5]. Selkov model assumes that the initial 

glycolytic substrate, which is glucose, is injected with a constant rate below some value 

[5]. This prediction has been verified by many biochemists such as Klitzing, Betz and co-

workers [5, 6, 7]. The study of Selkov model from dynamical system perspective has 

received a significant amount of attention, for example see [8, 9]. 

In real systems, parameter uncertainty and other sources of noise present 

everywhere. Moreover, environmental noises are important components in biochemical 

reactions. Although, we know that the parameters in the deterministic systems are all 

deterministic irrespective of environmental fluctuations. Therefore, for designing a more 

realistic model, we need to consider stochastic systems that take into account external 

influences in complex systems. 

On the other hand, in the last decades the study of nonlinear stochastic dynamical 

systems has received much attention. For instance, in [10], Sarkar examined the linear 

response of a glycolytic oscillator, driven by a multiplicative coloured noise to an 

external periodic field. 

Li and Zhang [11] studied the stochastic stability and stochastic bifurcation of 

Brusselator system with multiplicative white noise. Ma and Ning [12] investigated the 

stochastic P-bifurcation of Van der Pol oscillator with a fractional derivative damping 

term driven by Gaussian white noise excitation. Xu [13] studied P-bifurcation in a 

stochastic logistic model with correlated coloured noise. In [14], authors investigated the 

stability and bifurcation in a stochastic vocal folds model. Kong et al. [15] obtained 

global stability of a nonlinear oscillator excited by an ergodic real noise and harmonic 

excitations. For more references about stochastic stability and bifurcation, see [16, 17, 

18] and references therein. 

Motivated by the above argument we add randomly fluctuating driving force to 

the deterministic Selkov equations to analysing stochastic model. 

Indeed, in this paper, we first add stochastic terms or noise to the deterministic 

Selkov model and make a stochastic Selkov model. Then, the stochastic Selkov model is 

reduced to an Itô one dimensional averaged equation by using the stochastic averaging 

method. Next, the relationship between the qualitative behaviour of the diffusion process 

and the stationary probability density is studied. Finally, the stochastic dynamics and 

bifurcation of the model are analysed by some analytical method and numerical 

simulations. The highlights of this paper can be listed in the following:   

 A new stochastic Selkov model is obtained from a deterministic model and the 

stability of the new model is investigated. In fact, we state some theorems that 

give necessary and sufficient conditions for stability at equilibrium point.  

 By varying some parameters such as noise intensity, we prove the model 

undergoes P-bifurcation.  
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 Some numerical simulations are illustrated to verify the established results. 

2. PRELIMINARIES 

In this section, we present some preliminaries concepts and definitions that will be used 

in subsequent sections to establish the stochastic stability and bifurcation. 

Definition 2.1. (Stability in probability [19, 20]) The trivial solution            of 

stochastic differential equation is said to be stochastically stable or stable in probability 

if for every pair of         and    , there exists a               such that  

                                   

whenever        . Otherwise, it is said to be stochastically unstable.  

Definition 2.2. (Asymptotic stability in probability [20]) The trivial solution            

of stochastic differential equation is said to be stochastically asymptotically stable if it is 

stochastically stable and, moreover, for every        , there exists a               

such that  

     
   

                   

whenever        .  

Definition 2.3. (Global asymptotic stability in probability [19,20]) The equilibrium 

position is said to be stochastically asymptotically stable in the large if it is stochastically 

stable and, moreover, for all        

     
   

                 

Definition 2.4. (P-Bifurcation [19]) Phenomenological bifurcation is concerned with the 

change in the shape of density (stationary probability density) of a family random 

dynamical systems as the change of the parameter. If there exist a constant    satisfying 

in any neighborhood of   , there exist other two constant       and their corresponding 

invariant measures    
    

 satisfying    
 and    

 are not equivalent. Then the constant 

   is a point of phenomenological bifurcation.  

Now, consider the following two-dimensional stochastic differential equations 

(SDE):  

 {
                           
                           

               (2.1) 

where             ,                      and               are mutually 

independent standard real-valued Wiener processes on the complete probability space 

       . To ensure the existence and uniqueness of the solution of system (2.1), suppose 
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that the functions   and   satisfy the global Lipschitz continuous and linear growth 

conditions [21]. Moreover, suppose that           and                  , i.e. the 

origin is the fixed point of system (2.1). 

In order to investigating the stability and bifurcation analysis of two-dimensional 

SDE (2.1), we first consider Taylor expansions of    and    at the point        as 

follows:  

{
 
 

 
                            

              
         

                          

                            
              

         

                          

, 

where      and      indicate the high order terms with respect to   and  . 

Next, we ignore higher order terms and rescaling the system by      

  ̅         √  ̅   , where      ,             and         and   is a 

sufficiently small positive number. For simplicity, we drop the bars from the new 

variables and then get the following SDE  

 

{
 
 

 
 
                      

              
    

         √                     

                      
              

    

         √                     

             (2.2) 

According to the method presented in [21], we use polar coordinate 

transformation         and         with Itô formula and applying stochastic 

averaging method, we can rewrite the system (2.2) to the following Itô SDE  

 {
                       
                       

                           (2.3) 

where,       are independent and standard Wiener process,  

          
 

  
     

 

 
   

            
 

 
   

 

 
   

   

are drift coefficients and 

      √
  

 
  and       √

  

 
 

are diffusion coefficients, with the following notations:  
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In order to study the stability and bifurcation phenomena of SDE (2.1), it is 

efficient to consider the averaging modulus equation of system (2.2) [19]. Thus, we 

investigate the following equation  

        
 

  
     

 

 
   

      
  

 
   

 

                       (2.4) 

Note that, to preserve the random factors in the Equation (2.4), we assume      

in the rest of the paper, which implies    and    are positive numbers. 

We are now in a position to study the stochastic stability of Equation (2.1). Based 

on the above argument, the local stability of the trivial solution of system (2.1) is 

equivalent to the stability of the averaging amplitude Equation (2.4) at the origin. For this 

purpose, the linearized equation of (2.4) at     can be written as  

         
 

  
         

  

 
   

 

                      (2.5) 

where the solution is  

            (∫  
 

 
*   

  

  
 

  

  
+    ∫  

 

 
 
  

 
   

 

       )  (2.6) 

Hence, the associated largest Lyapunov exponent is  

      
    

        

 
    

  

  
 

  

  
  

From Oseledec multiplicative ergodic theorem [22], we know, the trivial solution 

of linearized equation is asymptotically stable with probability 1 if and only if the largest 

Lyapunov exponent is negative. 

Now, we can summarize the results in the following theorems.  

Theorem 2.5. [21]     When    
 

  
   

 

  
    , the trivial solution of the linear Itô 

stochastic differential equation (2.4) is asymptotically stable with probability  , thus the 

stochastic system (2.1) is stable at the equilibrium point  . 

     When    
 

  
   

 

  
    , the trivial solution of the linear Itô stochastic 

differential equation (2.4) is unstable with probability  , which implies that the stochastic 

system (2.1) is unstable at the equilibrium point  .  

Theorem 2.6. [21] When              and       , the stochastic system (2.1) 

is globally stable at the equilibrium point  .  

We can study phenomenological bifurcation by analyzing their steady-state 

probability density functions     . Based on Namachivaya’s theory [1] the extreme value 

of      gives necessary data on the stationary behavior of the Fokker-Planck equation 
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coming from nonlinear SDE. The Fokker-Planck equation associate with Equation (2.4) 

is  

 
     

  
  

 

  
*(    

  

  
   

  

 
  )     +  

 

 

  

   (
  

 
      )      (2.7) 

For more details about Focker-Planck see [16, 1].  

3. DETERMINISTIC SELKOV MODEL 

Here, we provide a brief description of the deterministic Selkov model for glycolysis, a 

process by which living cells break down sugar to obtain energy [8]:  

 {
 ̇            

 ̇           
                                    (3.1) 

where   and   represent the concentrations of ADP and F6P, respectively, and      . 

The parameter b is named phosphofructokinase and the parameter   is called hexokinase 

which is the activant from all the glycolytic cycle [9]. It is not difficult to see that 

      
 

      is the only equilibrium point for this system. If we change coordinates by 

letting       and     
 

     the equilibrium is       and system becomes:  

 {
 ̇  

    

    
          

 

    
            

 ̇   
   

    
          

 

    
            

            (3.2) 

Now, consider system (3.2) and fix       and   be the controller parameter. Let 

            and             as we can see in [8], the origin is stable for      

and there is a stable limit cycle for     . Also, the origin is stable in the region      

and there is a stable limit cycle in the region     . Then in each of the two cases    and 

   there is a Hopf bifurcation and the origin is unstable in the region        , where 

there exists a unique and stable limit cycle. Phase portrait of system (3.2) for some 

parameter   is shown in Figure 1.  

 

   

(a)       (b)            (c)       

Figure 1: Phase portrait of system (3.2) for      . 
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4. STOCHASTIC SELKOV MODEL 

Here, by adding random terms to nonlinear Selkov model (3.2), we obtain  

 {
 ̇   

    

    
          

 

    
                         

 ̇    
   

    
          

 

    
                         

     (4.1) 

where,             represent independent, standard Wiener processes and two real 

constants       representing the size of noises in the system due to the environment. 

Let             and                 √      for all      . Then  

{
     

    

    
          

 

    
               √           

    ( 
   

    
          

 

    
           )    √           

 (4.2) 

Note that for simplicity we remove the bars from the scaled variables. 

Now, by using the polar coordinate transformation         and        , and 

according to the Khasminskii limiting theorem [23], we have the following Itô SDE:  

 {
        

 

  
     

 

 
   

      
  

 
   

 

        

    
 

 
   

 

 
   

      
  

 
 

 

        
         (4.3) 

with the following notations:  

  

  
    

    
           

 

 
  

     
    

           

      
    

               
  

    
 

 

According to the Equation (2.7), we obtain its Fokker-Planck equation as follows:  

 
     

  
  

 

  
*  

 

 
 

  
    

 

  
   

 

 
       +  

 

 

  

    
   

    
 

 
         

The invariant measure of diffusion process      is the steady-state probability density 

     which is the solution of the degenerate system:  

    
 

  
*  

 

 
 

  
    

 

  
   

 

 
       +  

 

 

  

    
   

    
 

 
         

By calculation, we obtain  
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{
 
 

 
        

 

 
  

  

 

        
    

 

   
    

 
    

  

   
    

    

  
        

 

   
     

      
    

  

        
 

   
     

 

   
 

 
  

  
                  (4.4) 

 

In the following we need to compare   with some constant value. Hence, we first 

prove the following lemma.  

Lemma 4.1.  Let     and   be positive parameters. There are three modes to compare 

  
    

    
        and  :   

 If   
      

 
, then     for every    .  

 If   
      

 
, then for   √

          

 
, we have    , otherwise     

for every    .  

 If   
      

 
, then for      and      we have    , for      

   we obtain     and otherwise     for every    .  

  

Proof. Let     then  

 

    

    
         

 
                   

    
  

                             

                          

    
         √                   

 

    
         √         

 
 

 

Therefore, this is necessary that             and         . Since   is a 

positive parameter we have the following two roots:  

   √         √         

 
        √         √         

 
.           (4.5) 

             □ 

 

To determine the stability of the equilibrium point (or trivial solution), we express 

the following theorem.  
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Theorem 4.2.      When   
 

 
  

 , the stochastic system (4.1) is globally stable at the 

equilibrium point  . 

     When   
 

 
  

 , the stochastic system (4.1) is unstable at the equilibrium point  .  

Proof. The proof is a strightforward consequence of Theorems 2.5, 2.6 and Lemma 4.1. □  

 

5. BIFURCATION ANALYSIS 

Intuitively, Phenomenological bifurcation is concerned with the change in the shape of 

probability density of a family of stochastic dynamical systems as the change of the 

parameter. 

It is easy to seen that the extreme value point of     , is     or    

√   
 

 
  

  
 

 
  

   when    
 

 
  

  
 

 
  

 . Therefore, we obtain three type of 

conditions: 

Case (1). If 
  

 

 
   

   
    

 

 
, then               and the random trajectories of 

system (4.3) centralized in a neighborhood of the point    . 

Case (2). If 
   

    
 

 
     

  
  

 

 
, then      has the minimum value at the origin and 

the maximum value at the point   , but the derivative of      at the origin does not exist. 

Moreover, the random trajectories of system (4.3) centralized in a neighborhood of the 

point   . 

Case (3). then      has the minimum value at the origin and the maximum value at the 

point   . In this case, the probability density function      becomes a smooth function at 

the point   . 

 

These results imply the following theorem.  

Theorem 5.1.  System (4.1) undergoes stochastic phenomenological bifurcations as the 

phrase   passes through the values of 
   

    
 

 
 and   

  
  

 

 
.  

  

Remark 5.2. It is note that when the parameter   passes through the value of 
 

 
  

 , the 

probability density function      varies from Dirac function      to the other function in 

(4.4), which means that system (4.3) undergoes a P-bifurcation in a generalized sense.  
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In the following, we study the joint probability density        in terms of Cartesian 

coordinates   and   (for more details see [21, 24]). Hence, we have:  

 

        
       

        
    

 

   
     

 
    

  

   
    

          

   
        

 

   
     

      
    

  

        
 

   
     

 

                  (5.1) 

 

Similar to the above argument for     , the extremal value point of        may 

be obtained. In this way we need to calculate the gradient of        in   . Hence, we 

reach the following results: 

Case (1). If   
 

 
  

    
 , then        goes to infinite as     and    . 

Case (2). If 
 

 
  

    
    

    
     

 

 
, then        has a minimum value point at the 

origin, but it’s partial derivatives are the origin is not continuous. Moreover, It has a 

maximum value at the point of the stable limit cycle             
    

 . 

Case (3). If  
  

 
  

  
 

 
  

   , then        has a minimum at the origin, and a maximum 

at the point of the stable limit cycle of             
    

 . Moreover,        has 

continuous partial derivatives. 

 

Theses results can be presented as the following theorem.  

Theorem 5.3. The stochastic system (4.1) undergoes phenomenological bifurcations as 

the parameter   passes through the values of  
 

 
  

    
  and 

  

 
  

  
 

 
  

 .  

 

5.1 P−BIFURCATION WITH RESPECT TO THE NOISE 

In the following, we focus our attention on the qualitative change of the shape in the 

density of the stochastic Selkov model as the intensity of the noise changes. In other 

words, we fix   as a constant and investigate the effect of noise intensities on the 

stationary probability density function. This means by changing values of    and    the 

qualitative behaviour of probability density function changes. If parameters    and    

choose in the ellipse       
  

 

 
  

   , then      is a smooth function that has a 

maximum value at the point 

    √   
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and a minimum value at the point    . If    and    choose between two ellipses 

      
  

 

 
  

  
 

 
  and   , then      has a maximum value at the point    and 

minimum at the point    . But it has not derivative in    . If    and    choose out of 

the ellipse   , then              . We can summarize these results as the following 

theorem.  

Theorem 5.4.  The stochastic system (4.3) undergoes phenomenological bifurcations as 

parameters    and    passes through two ellipses    
 

 
  

  
 

 
  

    and      
  

 

 
  

   .  

 

6. BIFURCATION ANALYSIS 

In this section, we use numerical calculations to verify our analytic results. At the 

beginning of this section, we illustrate the phase portrait of system (4.1) for different 

values of parameters. Some discretization scheme may be used to numerically simulate 

solutions or trajectories for the SDEs. We approximate the solution by using the Euler-

Maruyama scheme [25]. The Euler-Maruyama method converges to the Itô solution and it 

has strong order of convergence 
 

 
 [26]. The Euler-Maruyama method applied to Equation 

(4.1) can be written in the following form  

 

{
  
 

  
              

    

    
                

 

    
                

                   √        

             
    

    
                

 

    
                

                   √        

 (6.1) 

for          , where        denotes a normally distributed random variable with zero 

mean and unit variance. 

 

In Figure 2, we study the stability conditions presented in Theorem 4.2. We 

choose           and      . When      , we have                 
 

 
  

        , therefore the origin is stable fixed point and when      , we have 

                      and the origin is unstable. Therefore, Figure 2 verify 

Theorem 4.2. 
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(a)   
 

 
  

  (b)   
 

 
  

  

Figure  2: Phase portrait of system (4.1) with                  

and (a)      , (b)      . 

 

 Figures 3 and 4 represents the time series for the simulation of stochastic Selkov 

model (4.1). In these simulations          is used, which are repeated       times up 

to a time     . We consider the parameter       and initial values         

         . As seen in Figure 4 (b) for the values of        and       , the periodic 

orbit that exists in the system without noise (see Figure 3 ), is destroyed and the values of 

  and   approach to zero. Accordingly, the original Hopf bifurcation is destroyed in the 

stochastic Selkov model.  

 

 

 

 

(a)       (b)       

Figure  3: Time series of model (4.1) without the noise. 
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(a)       (b)       

Figure  4: Time series of model (4.1) when the values of noises  

are        and       . 

 

In the next Examples we illustrate the P-bifurcation. We show that by varying 

some parameters the shape of probability density function changes.  

Example 6.1. Let               . By varying parameter  , we can see qualitative 

changes of density function      defined by (4.4). Simple calculation implies that:   

 If                     , then              , (see Figure 5, case (a)).  

 If                   , then      has the minimum value at the the origin 

and the maximum value at the point   , but the derivative of      at the origin 

does not exist, (see Figure 5, case (b)).  

 If         , then      has the minimum value at the origin and the maximum 

value at the point   , (see Figure 5, case (c)).  

 

Example 6.2. Let             or               . By choosing different values 

for parameters    and    we plot the probability density function      in Figure 6. If 

         the probability density is a smooth function with one maximum and one 

minimum point (Figure 6 (a)), if       lie between two ellipses    and   , then      has 

one maximum and one minimum point, but it has no derivative in the origin (Figure 6 

(a)). Finally, if f       lie out of two ellipses      tend to infinite if     . This example 

verifies Theorem 5.4.  
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(a)            (b)          (c)       

Figure  5: Probability density function      of system (4.3) 

for parameters                . 

 

 

   

             .              .              . 

Figure  6: Variations of probability density      of system (4.3) for parameters   

                  and       . (a)         , (b)            , 

(c)       out of   . 

 

 

Example 6.3 As an example, we take              . By varying parameter   for 

values                , we plot qualitative changes of the density function        

defined by (5.1) in Figure 7.  
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(a)         (b)         

  

(c)        (d)        

  

(e)        (f)        

Figure  7:  The graph of the joint probability density        of system 

(4.1)  for               and                   and  

it’s projection on    . 
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7. CONCLUSION 

In this paper stochastic model corresponding to Selkov model is investigated. The 

stochasticity in this model is presented by parameter perturbation which is the standard 

technique in SDEs. We discuss the stability and bifuraction of stochastic Selkov model. 

First, we transform the original model into an Itô limiting diffusion system. Next, we 

analyze the stability of the fixed point of the averaging system. We also obtain the 

stochastic bifurcation of the model by investigating the qualitative behaviour of stationary 

probability density. 

It is not difficult to see that noise intensity has an important effect on the systems. 

Indeed, when the size of environmental noise is non-existent, the system behaves like the 

deterministic model. It is evident that when the size of the noise parameter is increased, 

the fluctuations of the stochastic trajectories also increase in an erratic manner. 
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