

IRANIAN JOURNAL OF Mathematical Chemistry Journal homepage: ijmc.kashanu.ac.ir

Original Scientific Paper

Relations Between Sombor Index and some Degree–Based Topological Indices

SLOBODAN FILIPOVSKI[•]

Famnit, University of Primorska, Glagoljaška 8 Koper, Slovenia

ARTICLE INFO

Article History:

Received: 2 December 2020 Accepted: 30 March 2021 Published online 30 March 2021 Academic Editor: Sandi Klavžar

Keywords:

Sombor index Zagreb indices Randić index Forgotten index free graph-Triangle

ABSTRACT

In [13] Gutman introduced a novel graph invariant called Sombor index SO, defined as $SO(G) = \sum_{e_{ij \in E(G)}} \sqrt{\deg(v_i)^2 + \deg(v_j)^2}$. In this paper we provide relations between Sombor index and some degree-based topological indices: Zagreb indices, Forgotten index and Randić index. Similar relations are established in the class of triangle-free graphs.

© 2021 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G = (V,E) be a simple undirected graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G), |E(G)| = m. For i = 1, 2, ..., n the *degree* of a vertex $v_i \in V(G)$ is denoted by deg (v_i) and it is defined as the number of edges incident with v_i . If the vertices v_i and v_j are connected, then the connecting edge is labeled by e_{ij} . A *topological index* is a numerical quantity of a graph, which is invariant under graph isomorphisms. In mathematical chemistry several topological indices have been introduced and extensively studied [14, 17, 19, 20]. Vertex-degree based topological indices present an important molecular descriptor closely related with many chemical properties. Among the oldest and most studied topological indices, there are two classical vertex-degree based topological indices-the *first*

^{*}Corresponding author (Email address: slobodan.filipovski@famnit.upr.si)

DOI: 10.22052/ijmc.2021.240385.1533

Zagreb index and *second Zagreb index*. The Zagreb indices were introduced by Gutman et al. in [11, 12]. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ of a graph *G* are defined, respectively, as

$$M_1(G) = \sum_{v_i \in V(G)} \deg(v_i)^2 = \deg(v_1)^2 + \deg(v_2)^2 + \dots + \deg(v_n)^2,$$

and

$$M_2(G) = \sum_{e_i \in E(G)} \deg(v_i) \deg(v_j)$$

During the past decades, numerous research papers concerning Zagreb indices have been published, see [1–8, 10]. In [15,16], Li et al. introduced the generalized version of the first Zagreb index, defined as

$$Z_{p}(G) = M_{1}^{p}(G) = \deg(v_{1})^{p} + \deg(v_{2})^{p} + \dots + \deg(v_{n})^{p}$$

where *p* is a real number. This graph invariant is nowadays known under the name *general first Zagreb index*, and has also been much investigated. The case p = 3 was first studied by Furtula et al. [9]. They introduced the *forgotten index* of a graph *G*, also called as *F*-index, which is defined as

$$F(G) = \sum_{v_i \in V(G)} \deg(v_i)^3 = \sum_{e_i \in E(G)} (\deg(v_i)^2 + \deg(v_j)^2).$$

In 2020, Gutman introduced a new vertex-degree-based topological index defined as $SO(G) = \sum_{e_{ij \in E(G)}} \sqrt{\deg(v_i)^2 + \deg(v_j)^2}$ which was named *Sombor index*, [13]. Some basic properties of the Sombor index were established in [13].

Motivated by this recent research, in this paper we provide basic relationships between the Sombor index and Zagreb/Randić indices, Section 2. In Section 3, we estimate the Sombor index for the triangle-free graphs. The results in this paper are based on elementary inequalities.

2. RELATIONS BETWEEN SOMBOR INDEX AND ZAGREB/RANDIĆ INDICES

In this section we assume that G is a simple connected graph with n vertices $v_1, v_2, ..., v_n$ and m edges. The corresponding vertex-degrees of G we denote by $deg(v_1),..., deg(v_n)$.

Theorem 2.1 Let G be a graph on n vertices. Then $SO(G) \ge \frac{1}{\sqrt{2}}M_1(G)$. The equality holds if and only if G is a regular graph.

Proof. From the inequality between quadratic and arithmetic means for the positive numbers deg(v_i) and deg(v_j) we have $\sqrt{\deg(v_i)^2 + \deg(v_j)^2} \ge \frac{1}{\sqrt{2}} (\deg(v_i) + \deg(v_j))$. Thus we get $SO(G) = \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2} \ge \sum_{e_{ij} \in E(G)} \frac{1}{\sqrt{2}} (\deg(v_i) + \deg(v_j)) = \frac{1}{\sqrt{2}} \sum_{v_i \in V(G)} \deg(v_i)^2 = \frac{1}{\sqrt{2}} M_1(G)$.

If G is a k-regular graph, then we have
$$SO(G) = \frac{nk^2}{\sqrt{2}} = \frac{1}{\sqrt{2}}M_1(G)$$
.

Remark 2.2 It is well known that for a simple connected graph with *n* vertices and *m* edges occurs $M_1 \ge \frac{4m^2}{n}$. From Theorem 2.1, we conclude that $SO(G) \ge \frac{2\sqrt{2}m^2}{n}$.

Theorem 2.3 Let G be a graph on n vertices. Then $SO(G) \ge \frac{\sqrt{2}}{n-1}M_2(G)$. The equality holds if and only if G is a complete graph on n vertices.

Proof. Clearly $\deg(v_i) + \deg(v_j) \le 2n - 2$ for each $i, j \in \{1, ..., n\}$. The inequality between quadratic and harmonic means for the numbers $\deg(v_i)$ and $\deg(v_i)$ yields

$$\sqrt{\frac{\deg(v_i)^2 + \deg(v_j)^2}{2}} \ge \frac{2}{\frac{1}{\deg(v_i)} + \frac{1}{\deg(v_j)}} = \frac{2\deg(v_i)\deg(v_j)}{\deg(v_i) + \deg(v_j)} \ge \frac{1}{n-1}\deg(v_i)\deg(v_j).$$
(1)

From (1) we obtain the following lower bound for the Sombor index

$$SO(G) = \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2} \ge \frac{\sqrt{2}}{n-1} \sum_{e_{ij} \in E(G)} \deg(v_i) \deg(v_j) = \frac{\sqrt{2}}{n-1} M_2(G).$$

If G is a complete graph on n vertices, then $\frac{\sqrt{2}}{n-1}M_2(K_n) = \frac{n(n-1)^2}{\sqrt{2}} = SO(K_n)$, see in [13].

Theorem 2.4 Let G be a graph on n vertices and m edges. Then $SO(G) \le \sqrt{mF(G)}$. The equality holds if and only if G is a regular graph.

Proof. We apply the inequality between arithmetic and quadratic means to the *m* numbers $\sqrt{\deg(v_i)^2 + \deg(v_j)^2}$ determined by the edges $e_{ij} \in E(G)$. Hence

$$SO(G) = \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2} \le \sqrt{m} \sqrt{\sum_{e_{ij} \in E(G)} (\deg(v_i)^2 + \deg(v_j)^2)} = \sqrt{m} \cdot \sqrt{\sum_{v_i \in V(G)} \deg(v_i)^3} = \sqrt{m \cdot F(G)}.$$

If G is a k-regular graph, then $m \cdot F(G) = \frac{n^2 k^4}{2} = SO^2(G)$.

Theorem 2.5 Let G be a graph with n vertices and m edges. If $Z_5(G)$ is a general Zagreb index of G, then

$$SO(G) \le \sqrt[4]{2m^3 Z_5(G)} \ .$$

The equality holds if and only if G is a regular graph.

Proof. From the power inequality of order 4 and 1 for *m* numbers $\sqrt{\deg(v_i)^2 + \deg(v_j)^2}$ determined by the edges $e_{ij} \in E(G)$ we obtain

$$\sqrt[4]{\frac{\sum_{e_{ij} \in E(G)} (\sqrt{\deg(v_i)^2 + \deg(v_j)^2})^4}{m}} \ge \frac{\sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2}}{m} = \frac{SO(G)}{m}.$$
 (2)

From $\deg(v_i)^4 + \deg(v_j)^4 \ge 2\deg(v_i)^2 \cdot \deg(v_j)^2$ and from the inequality in (2) we get

$$4\sqrt{\frac{2\sum_{e_{ij}\in E(G)} (\deg(v_{i})^{4} + \deg(v_{j})^{4})}{m}} \ge \frac{SO(G)}{m} \Leftrightarrow$$

$$4\sqrt{2} \cdot 4\sqrt{\frac{\sum_{v_{i}\in V(G)} \deg(v_{i})^{5}}{m}} \ge \frac{SO(G)}{m} \Leftrightarrow \sqrt{2} \cdot 4\sqrt{\frac{Z_{5}(G)}{m}} \ge \frac{SO(G)}{m} \Leftrightarrow SO(G) \le \sqrt{2m^{3}Z_{5}(G)}.$$
is a k - regular graph, then $2m^{3}Z_{5}(G) = \frac{n^{4}k^{8}}{4} = SO^{4}(G).$

In the last two results of this section we establish relationships between Sombor and Randić index (reduced reciprocal Randić index). The Randić index R(G) was introduced in 1975 by Randić [18] as follows:

$$R(G) = \sum_{e_{ij} \in E(G)} \frac{1}{\sqrt{\deg(v_i)\deg(v_j)}}$$

It is a measure of branching of the carbon-atom skeleton and has been closely correlated with many chemical properties.

Theorem 2.6 Let G be a graph on n vertices and m edges. Then $SO(G) \ge \frac{\sqrt{2}m^2}{R(G)}$. The equality holds if and only if G is a regular graph.

Proof. Since $\deg(v_i)^2 + \deg(v_j)^2 \ge 2 \deg(v_i) \deg(v_j)$ we obtain

$$SO(G) = \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2} \ge \sqrt{2} \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i) \deg(v_j)}.$$

From the inequality between arithmetic and harmonic means for the numbers $\sqrt{\deg(v_i) \deg(v_j)}$, where $v_i v_j = e_{ij}$, we have

$$SO(G) \ge \sqrt{2} \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i) \deg(v_j)} \ge \sqrt{2} \frac{m^2}{\sum_{e_{ij} \in E(G)} \frac{1}{\sqrt{\deg(v_i) \deg(v_j)}}} = \frac{m^2 \sqrt{2}}{R(G)}$$

If G

If G is a k-regular graph, then
$$R(G) = \frac{n}{2}$$
. Thus, $\frac{\sqrt{2}m^2}{R(G)} = \frac{nk^2}{\sqrt{2}} = SO(G)$.

Theorem 2.7 Let *G* be a graph with *n* vertices and *m* edges and let $deg(v_i) > 1$ for every vertex $v_i \in V(G)$. If *RRR*(*G*) is reduced reciprocal Randić index of *G*, then

$$SO(G) \ge \sqrt{2}(RRR(G) + m).$$

The equality holds if and only if G is a regular graph.

Proof. Using the inequality between geometric and arithmetic means for the numbers $deg(v_i) - 1$ and $deg(v_i) - 1$ we have

$$\sqrt{(\deg(v_i) - 1)(\deg(v_j) - 1)} \leq \frac{\deg(v_i) + \deg(v_j) - 2}{2} = \frac{\deg(v_i) + \deg(v_j)}{2} - 1 \leq \frac{\sqrt{\deg(v_i)^2 + \deg(v_j)^2}}{2} - 1.$$
(3)

From (3) we get

$$SO(G) = \sum_{e_{ij} \in E(G)} \sqrt{\deg(v_i)^2 + \deg(v_j)^2} \ge \sqrt{2} \sum_{e_{ij} \in E(G)} \left(\sqrt{(\deg(v_i) - 1)(\deg(v_j) - 1)} + 1 \right)$$
$$= \sqrt{2} (RRR(G) + m).$$

If G is a k-regular graph, then

$$\sqrt{2}(RRR(G) + m) = \sqrt{2}(m(k-1) + m) = \sqrt{2}mk = \frac{nk^2}{\sqrt{2}} = SO(G).$$

3. A SOMBOR INDEX AND TRIANGLE-FREE GRAPHS

A triangle-free graph is an undirected graph containing no triangles (3-cycles). Because of their specific structure, this family of graphs play an important role in graph theory, consequently in chemical graph theory. The topological indices of the triangle-free graphs are studied intensively in numerous research papers. We list two known results concerning Zagreb indices.

Theorem 3.1 [21] Let G be a triangle-free (n,m)-graph. Then $M_1(G) \le mn$ and equality holds if and only if G is a complete bipartite graph.

Theorem 3.2 [21] Let G be a triangle-free graph with m > 0 edges. Then $M_2(G) \le m^2$ with equality if and only if G is the union of a complete bipartite graph and isolated vertices.

with *n* vertices $v_1, v_2, ..., v_n$ and corresponding vertex-degrees deg (v_1) , deg (v_2) , ..., deg (v_n) . The next two results give a relation between the Sombor index and the second Zagreb index in the class of triangle-free graphs.

Theorem 3.3 Let G be a triangle-free graph on n vertices. If $M_2(G)$ is the second Zagreb index of G, then

$$SO(G) \ge \frac{2\sqrt{2}}{n} M_2(G)$$

The equality holds if and only if G is a complete graph on $\frac{n}{2} + 1$ vertices.

Proof. The proof follows from Remark 2.2 and Theorem 3.2.

Theorem 3.4 Let G be a triangle-free graph on n vertices and m edges. Then $SO(G) \le \sqrt{m(mn^2 - 2M_2(G))}$.

Proof. Recall, for $e_{ij} = v_i v_j \in E(G)$ holds $\deg(v_i) + \deg(v_j) \le n$. Thus

$$\sum_{e_{ij} \in E(G)} (\deg(v_i) + \deg(v_j))^2 \le mn^2 \Leftrightarrow \sum_{v_i \in V(G)} \deg(v_i)^3 + 2 \cdot \sum_{e_{ij} \in E(G)} \deg(v_i) \deg(v_j) \le mn^2 \Leftrightarrow F(G) + 2M_2(G) \le mn^2.$$

Now the required result follows directly from Theorem 2.4.

Note that the Sombor index in Theorem 2.4 depends on the size of G and the corresponding forgotten index. We apply this result to triangle-free graphs by obtaining an upper bound for the size of G in terms of n and the maximum degree Δ .

Proposition 3.5 Let G be a triangle-free graph with n vertices, m edges and maximum degree Δ . Then, $m \leq \Delta(n - \Delta)$.

Proof. Let *v* be a vertex of *G* with maximum degree Δ . Since *G* is a triangle-free graph there are no edges in the neighborhood of *v*. Moreover, every vertex which is not in the neighborhood of *v* has degree at most Δ . Therefore, the maximum number of edges of *G* is $\Delta + (n - \Delta - 1)\Delta = \Delta(n - \Delta)$.

Remark 3.6 The above result is useful if $\Delta \ge n/2$. In this case $m \le \Delta(n - \Delta) \le n\Delta/2$, which is an improvement of the trivial bound $m \le n\Delta/2$.

From Proposition 3.5 and Theorem 2.4 we derive the following result.

Corollary 3.7 Let *G* be a triangle-free graph with *n* vertices and maximum degree $\Delta \ge \frac{n}{2}$. If *F*(*G*) is the forgotten index of *G*, then $SO(G) \le \sqrt{\Delta(n-\Delta)F(G)}$.

ACKNOWLEDGEMENT. This work is supported in part by the Slovenian Research Agency (research program P1-0285)

REFERENCES

- A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, *MATCH Commun. Math. Comput. Chem.* 80 (2018) 5–84.
- 2. B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, *MATCH Commun. Math. Comput. Chem.* **78** (2017) 17–100.
- 3. K. C. Das, Sharp bounds for the sum of the squares of degrees of a graph, *Kragujevac J. Math.* **25** (2003) 31–49.
- 4. K. C. Das, Maximizing the sum of the squares of the degrees of a graph, *Discrete Math.* **285** (2004) 57–66.
- 5. K. C. Das, On comparing Zagreb indices of graphs, *MATCH Commun. Math. Comput. Chem.* **63** (2010) 433-440.
- 6. K. C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514–521.
- 7. K. C. Das, K. Xu and J. Nam, On Zagreb indices of graphs, *Front. Math. China* **10** (2015) 567–582.
- 8. S. Filipovski, New bounds for the first Zagreb index, *MATCH Commun. Math. Comput. Chem.* **85** (2) (2021) 303–312.
- 9. B. Furtula and I. Gutman, A forgotten topological index, *J. Math. Chem.* **53** (4) (2015) 1184–1190.
- 10. G. H. Fath-Tabar, Old and new Zagreb indices of graphs, *MATCH Commun. Math. Comput. Chem.* **64** (2011) 79–84.
- 11. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- 12. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
- 13. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, *MATCH Commun. Math. Comput. Chem.* **86** (2021) 11–16.

- 14. V. R. Kulli, Graph indices, in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66–91.
- 15. X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, *MATCH Commun. Math. Comput. Chem.* **50** (2004) 57–62.
- 16. X. Li and J. Zheng, A unified approach to the extremal trees for different indices, *MATCH Commun. Math. Comput. Chem.* **54** (2005) 195–208.
- J. Rada and S. Bermudo, Is Every Graph the Extremal Value of a Vertex–Degree– Based Topological Index? *MATCH Commun. Math. Comput. Chem.* 81 (2) (2019) 315–323.
- 18. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
- 19. R. Todeschini and V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley-VCH, Weinheim, 2009.
- 20. Y. Yao, M. Liu, K. C. Das and Y. Ye, Some extremal results for vertex-degree-based invariants, *MATCH Commun. Math. Comput. Chem.* **81** (2) (2019) 325–344.
- 21. B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113-118.