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Recently, a bond-additive topological descriptor, named as the 

Mostar index, has been introduced as a measure of peripherality in 

networks. For a connected graph  , the Mostar index is defined as 

      ∑                        , where for an edge      we 

denote by       the number of vertices of   that are closer to   than 

to   and by       the number of vertices of   that are closer to   than 

to  . In the present paper, we prove that the Mostar index of a 

weighted graph can be computed in terms of Mostar indices of 

weighted quotient graphs. Inspired by this result, several 

generalizations to other versions of the Mostar index already 

appeared in the literature. Furthermore, we apply the obtained 

method to benzenoid systems, tree-like polyphenyl systems, and to a 

fullerene patch. Closed-form formulas for two families of these 

molecular graphs are also deduced.  
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1. INTRODUCTION  

Szeged and PI indices are some of the well known distance-based molecular descriptors 

defined as the sum of edge contributions. Very recently, another bond-additive topological 

index, named as the Mostar index, has been introduced [16]. For any connected graph 

 , the Mostar index of  , denoted as      , is defined as 

       ∑                          
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where for an edge      we denote by       the number of vertices of   that are closer to 

  than to   and by       the number of vertices of   that are closer to   than to  . This 

index measures peripherality of individual edges and then sums the contributions of all 

edges into a global measure of peripherality for a given graph. Some chemical applications 

of the Mostar index were reported in [3, 13], while some other results can be found in [14, 

21, 25]. In [16], a simple cut method for computing the Mostar index of benzenoid systems 

was also presented. Note that the cut method is a very useful tool for the computation of 

such topological descriptors [22]. 

In the present paper, we first define the Mostar index for weighted graphs, which 

are also sometimes called networks. Later on, we prove that the Mostar index of a weighted 

graph can be computed as the sum of Mostar indices of weighted quotient graphs obtained 

by a partition of the edge set that is coarser than the   -partition. Such methods were 

recently developed also for other distance-based molecular descriptors (see [4, 7, 12, 23, 

24]) and can be used to calculate the indices for various carbon 

nanostructures. Moreover, our method is used to compute the Mostar index for some 

benzenoid systems and for a fullerene patch. In addition, we present how the main theorem 

can be applied to tree-like polyphenyl systems. 

Note that since the preprint of the present paper was published on arXiv in 2019 

(arXiv:1904.04131), the results were already generalized to strength-weighted graphs and 

to other versions of the Mostar index, see [2, 3]. However, some results of this paper are 

essentially used in [2, 3, 6, 26] and therefore, we present the main part of the paper (Section 

3) in the original form. 

 

2. PRELIMINARIES 

Unless stated otherwise, the graphs considered in this paper are simple, finite, and 

connected. For a graph  , we denote by      the set of vertices of   and by      the set 

of its edges. Moreover,         is the usual shortest-path distance between vertices 

        .  

Let   be a graph and      an edge of  . Throughout the paper we will use the 

following notation:  

                                       

                                       

 

Let   
       . If          

  and           
  are given weights, then 

         is called a vertex-edge-weighted graph or shortly just a weighted graph. For any 

          we define:  

             ∑                                ∑                 
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We now introduce the Mostar index of          as             

∑                                           Obviously, for        this is exactly 

the Mostar index of  .  

Let      and      be two edges of a graph  . If  

                                  

we say that   and   are in relation   (also known as Djokovi  -Winkler relation) and write 

   . Note that in some graphs this relation is not transitive (for example in odd 

cycles), although it is always reflexive and symmetric. As a consequence, we often 

consider the smallest transitive relation that contains relation   (i.e. the transitive closure of 

 ) and denote it by   . It is known that in a partial cube, which is defined as an isometric 

subgraph of some hypercube, relation   is always transitive, so     . More precisely, a 

connected graph   is a partial cube if and only if   is bipartite and      

[20]. Moreover, the class of partial cubes contains many interesting molecular graphs (for 

example benzenoid systems and phenylenes). For more information on partial cubes and 

relation  , see [20].  

Let             be the   -partition of the edge set      and             

an arbitrary partition of     . If every element of   is a subset of some element of  , we 

say that   is coarser than  . In such a case   will be shortly called a c-partition.  

Suppose   is a graph and        is some subset of its edges. The quotient graph 

    is defined as the graph that has connected components of     as vertices; two such 

components   and   being adjacent in     if and only if some vertex from   is adjacent to 

a vertex from   in graph  . If             is an edge in graph    , then we denote 

by  ̂ the set of edges of   that have one end vertex in   and the other end vertex in 

 , i.e.  ̂                           . 

 

3. COMPUTING THE MOSTAR INDEX FROM THE QUOTIENT GRAPHS  

We show in this section that the Mostar index of a weighted graph can be computed from 

the corresponding quotient graphs. 

Throughout the section, let   be a connected graph and           a c-partition of 

the set     . Moreover, the quotient graph      will be shortly denoted as    for any 

         . In addition, we define the function               as follows: for any 

      , let       be the connected component   of the graph      such that   

    . The next lemma was obtained in [23], but the proof can be also found in [24, 27]. 

 

Lemma 3.1. [23, 24, 27] If          are two vertices, then  

         ∑   
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The following lemma is the key to our method. The result was actually obtained in 

[24], but was not stated in this way. Therefore, for the sake of completeness we give the 

whole proof. 

Lemma 3.2. If        , where          , then         and         are 

adjacent vertices in   , i.e.           . Moreover,  

         ⋃            
      

          ⋃            
      

  

Proof. We follow the idea used inside the proof of Theorem 3.1 from [24]. Obviously, for 

any          ,    , it holds             and therefore    
               . By 

Lemma 3.1 we now obtain  

         ∑   
      

                 
               

which implies    
               . Hence,         and         are adjacent 

vertices in    and we denote     . Next, let        be an arbitrary vertex in 

 . Again, for any          ,    , it holds    
              

   
             . Therefore, by Lemma 3.1 we have  

                 ∑   
      

              ∑   
      

              

  ∑   
   (   

                 
             ) 

     
                 

               

Obviously, we can see from the obtained equality that                 if and 

only if    
                 

             . Hence,           if and only if       

                     , which is equivalent to        for some           . This 

proves the following equality:  

         ⋃            
      

The remaining equality can be shown in the same way.                                                          

  

Let          
 ,           

  be given weights and          . We define 

           
  in the following way: for any        , let       ∑            . So 

      is the sum of all the weights of vertices from  . 

Moreover, we define             
  as follows: for any           , let 

       ∑     ̂      . Therefore,        is the sum of weights of edges that have one end 

vertex in   and the other end vertex in  . 

 The following lemma will be needed as well. For a special case the result of this 

lemma can be found inside the proof of Theorem 3.1 from [24]. 
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Lemma 3.3. Let        , where          , and        ,        . If   

        , then  

                            

                             

Proof. By Lemma 3.2 we calculate  

             ∑                

  ∑            
(∑            ) 

  ∑            
      

                 

which proves the first equality. The other equality can be shown in the same way.   

  

Now we can state the main theorem. Based on the proof of this 

result, generalization to strength-weighted graphs and to other versions of the Mostar index 

was already published in [2] (see also [3, 6]). However, we include the proof anyway. 

 

Theorem 3.4. If          is a weighted connected graph and           is a c-partition 

of the set     , then  

            ∑   
                  

  

Proof. Obviously, it holds      ⋃   
     . Moreover, for all           we have (by 

Lemma 3.2)  

    ⋃         
 ̂  

In the rest of the proof, we will write just    instead of           . Therefore, one can 

compute 

   ∑                                          

  ∑   
   (∑         

                              ) 

  ∑   
   (∑            

 ∑        ̂                               ])  

If      is an edge in    and      is an arbitrary edge from  ̂, then by Lemma 3.3 we 

have  

                                                          

Finally,  

    ∑   
   (∑            

 ∑     ̂                                   ]) 

              ∑   
   (∑            

                              ∑     ̂      ]) 

  ∑   
   (∑            

                                   ) 

  ∑   
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which is what we wanted to prove.                                                                                          

 

If        for any        and         for any       , then 

                , which leads to the next corollary. 

 

Corollary 3.5. If   is a connected graph and           a c-partition of the set     , then  

       ∑   
                  

where              
 ,               

  are defined as follows:       is the number 

of vertices in the connected component   of      and         is the number of edges in 

the set   ̂ (the number of edges between   and  ).  

  

4. APPLICATIONS TO MOLECULAR GRAPHS 

We apply the main result of the paper to some important molecular graphs. In 

particular, we consider benzenoid systems, polyphenyl systems, and a fullerene patch. 

 

4.1  BENZENOID SYSTEMS 

In this subsection, we show on two examples how the obtained method can be used to 

efficiently calculate the Mostar index of a benzenoid system (see also [3] for closely related 

topics). Note that such a computation can be done even by hand. 

Let   be the hexagonal (graphite) lattice and let   be a cycle on it. A  benzenoid 

system is the graph induced by the vertices and edges of  , lying on   or in its interior. The 

benzenoid systems defined in this way are sometimes called simple [15]. In the figures, we 

usually do not use dots to denote the vertices of benzenoid systems. For an example of a 

benzenoid system see Figure 1 or Figure 3. More information on these molecular graphs 

can be found in [18]. 

An elementary cut of a benzenoid system   is a line segment that starts at the center 

of a peripheral edge of a benzenoid system, goes orthogonal to it and ends at the first next 

peripheral edge of  . The main insight for our consideration is that every  -class of a 

benzenoid system   coincides with exactly one of its elementary cuts. Therefore, we can 

easily see that benzenoid systems are partial cubes [20]. As a consequence, by removing all 

the edges that correspond to an elementary cut of a benzenoid system, the obtained graph 

has exactly two connected components. 

The edge set of a benzenoid system   can be naturally partitioned into sets 

     , and    of edges of the same direction. Obviously, the partition            is a c-

partition of the set     . For          , let         be the corresponding quotient 

graph. It is well known that   ,   , and    are trees [10]. 
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Next, we define the weights            
  and             

  as in Corollary 

3.5:   

1. for        , let       be the number of vertices in the component   of 

    ;  

2. for           , let        be the number of edges between components 

  and   (the number of edges in the set  ̂).  

 

By Corollary 3.5 we immediately arrive to the following theorem. 

 

Theorem 4.1. [3] If   is a benzenoid system, then  

                                                  

  

The following lemma will be also needed. The proof is based on the standard BFS 

(breadth-first search) algorithm and is almost the same as the proof of Proposition 4.4 in 

[12].  

Lemma 4.2. [3] If          is a weighted tree with   vertices, then the index            

can be computed in      time.  

 

In [10] it was shown that for each           the quotient tree    can be computed 

in linear time with respect to the number of vertices in a benzenoid system (calculation of 

the corresponding weights   ,     can be done within the same time 

complexity). Therefore, by Lemma 4.2 and Theorem 4.1, the Mostar index of a benzenoid 

system   can be computed in linear time           [3]. However, by following the idea 

from [11], the Mostar index can be computed even faster, i.e. in sub-linear time (see [3] for 

more details). The proof of this fact uses a special construction of weighted trees 

           ,          , that depends only on the boundary cycle of a benzenoid system 

(actually it relies on Chazelle's algorithm [8] for computing all vertex-edge visible pairs of 

edges of a simple finite polygon in linear time). 

In the rest of the subsection, we apply Theorem 4.1 to some benzenoid systems. As 

the first example, we calculate the Mostar index for an infinite family of molecular graphs 

called coronenes, which was already done in Theorem 14 of [16]. However, we now show 

how the same result can be achieved by using our method. In particular, coronene    is just 

a single hexagon, and    is obtained from      by adding a ring of hexagons around 

it. Coronene    is depicted in Figure 1. 
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Figure 1: Coronene   . 

Firstly, we determine the weighted quotient tree             for every   

       . Because of the symmetry, all the weighted trees are equal. Let    be the set of all 

the vertical edges in   ,    . For the graph    these edges and the corresponding 

elementary cuts are shown in Figure 2 (a). Moreover, the weighted quotient tree 

            can be seen in Figure 2 (b). 

 

    

  

Figure 2: (a) Horizontal elementary cuts for coronene    and (b) the  

                       weighted tree            . 

 

However, we can easily generalize the above example to coronene    and obtain 

that the quotient tree    is isomorphic to the path on    vertices. Moreover, the weighted 

tree             is depicted in Figure 3. 

 

 

Figure 3: Weighted quotient tree             for graph   . 

  

Therefore, it is easy to compute  
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                ∑      
     (  ∑      

         ) 

                                          

 Finally, by Theorem 4.1 we have  

                                                  

                              

                                            

which coincides with the result from [16].  

As the second example, we compute the Mostar index for a branched benzenoid 

system   from Figure 4. 

  

Figure 4: Benzenoid system  . 

  

Again, let    be the set of all vertical edges of   and let       be the edges in the 

other two directions. Then, the weighted quotient trees are shown in Figure 4. 

 

 
Figure 5: Weighted quotient trees (a)             and (b)             

            for graph  . 

  

Hence, we can compute  
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Finally, by Theorem 4.1 one can calculate  

                                                 

                          

                   

 

We should mention that by using our method, analogous results can be deduced for 

some other families of interesting molecular graphs and networks, in particular for 

phenylenes [7] and      systems [12]. Another application to tree-like polyphenyl systems 

is considered in the following subsection. 

 

4.2  TREE−LIKE POLYPHENYL SYSTEMS 

Polyphenyls are conjugated hydrocarbons consisting of benzene rings that are connected by 

some bonds. In graph theory, molecular graphs of polyphenyls belong to the family of 

polyphenyl systems. In this subsection, we develop a method for computing the Mostar 

index of tree-like polyphenyl systems. Note that by using our procedure, various other 

distance-based topological indices of these graphs can be efficiently computed (for 

example the Wiener index, the edge-Wiener index, the Szeged indices, etc.). Some research 

on tree-like polyphenyl systems can be found in [5, 9, 19]. Next, we formally define 

polyphenyl systems in the language of graph theory. 

 A connected graph   is called a polyphenyl system if the following conditions hold 

true:   

i. every vertex of   belongs to exactly one 6-cycle (also called hexagon), which 

means that   is constructed by a certain number of disjoint hexagons; 

ii. every edge of   which does not belong to a hexagon has the end vertices in two 

distinct hexagons (in such a case, we say that the edge connects these two 

hexagons); 

iii. for any two distinct hexagons there is at most one edge that connects them.  

 

Two distinct hexagons    and    of a polyphenyl system are adjacent if there 

exists an edge with one end vertex in    and another end vertex in   . The graph obtained 

by contracting every hexagon of a polyphenyl system   into a vertex is called the squeeze 

of  . Moreover,   is called tree-like if the squeeze of   is a tree, see Figure 

6. Obviously, in a tree-like polyphenyl system with   hexagons there are exactly     

edges with the end vertices in two distinct hexagons and those edges must be bridges. Note 

that in [19] tree-like polyphenyl systems were called just polyphenyls. 
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Figure 6: A tree-like polyphenyl system. 

 

In this paper, we always assume that polyphenyl systems contain only regular 

hexagons and that all the hexagons are identically oriented, i.e. any two hexagons have 

three pairs of parallel edges. As a consequence, the edges of hexagons of a tree-like 

polyphenyl system   can be naturally partitioned into sets      , and    of edges of the 

same direction. Moreover, let    be the set of all the other edges of   (those that do not 

belong to a hexagon). We can prove the following lemma. 

 

Lemma 4.3. If   is a tree-like polyphenyl system, then the partition               is a c-

partition of the set     . Moreover,   is a partial cube.  

 

Proof. Let   and   be two distinct edges of  . If   and   are not opposite edges of a 

hexagon, then there exists a shortest path in   that contains   and  . As a consequence,   

and   are not in relation   (see Lemma 11.1 in [20]). On the other hand, if   and   are 

opposite edges of a hexagon, then they are in relation  . We now see that relation   is 

transitive and that any  -class of   either contains two opposite edges of a hexagon or 

consists of a single edge connecting two distinct hexagons. Therefore,               

obviously is a c-partition of the set     . 

We next show that   is bipartite. It is enough to prove that the vertices of   can be 

colored with two colors such that adjacent vertices get different colors. We first color the 

vertices of the hexagon    that is chosen as a root of the squeeze   of  . Then, we continue 

with coloring the vertices of hexagons according to the breadth-first search order (BFS) on 

 . In this way, we can color all the vertices of   such that adjacent vertices receive 

different colors. Therefore, since   is bipartite and relation   is transitive,   is a partial 

cube (see Theorem 11.8 in [20]).                                                                                             

 

However, the fact that tree-like polyphenyl systems are partial cubes is already well 

known. More precisely, in [9] it was observed that if   is a tree-like polyphenyl 

system, then it admits a partition of the edge set      into convex cuts, and therefore, by 
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Proposition 2.1 from [23] it follows that   is a partial cube. Moreover, the convex cuts used 

in [9] coincide with  -classes of   (but unification of different  -classes to obtain a c-

partition was not considered). 

Based on the c-partition               described above Lemma 4.3, we now 

consider quotient graphs. Hence, for             the corresponding quotient graph      

will be denoted by    . Obviously, the graph    is exactly the squeeze of  . 

 

Lemma 4.4. If   is a tree-like polyphenyl system, then the quotient graphs             are 

trees.  

 

Proof. Since    is the squeeze of  , it must be a tree. Next, we show that   ,          , is 

a tree by performing some transformations on the squeeze      of  :   

i. Choose a vertex   of   and replace it by two vertices,    and   , which 

correspond to the two parts of the hexagon   after removing the edges from the 

set   . Then, for every neighbour    of   in   either add an edge between    and 

   (if some vertex in    is adjacent in graph   to a vertex of   ) or add an edge 

between    and    (if some vertex in    is adjacent in graph   to a vertex of 

  ). These new edges will be called thin edges. Finally, add an edge between    

and   , which is called a thick edge). Obviously, after performing this 

transformation the obtained graph, still denoted by  , is a tree. 

ii. Apply transformation     also on every remaining vertex (that represents a 

hexagon) of  . The final tree obtained by following this procedure is denoted as 

  . 

iii. Choose a thin edge of    and contract it into one vertex (i.e. identify the end 

vertices of this edge). The obtained graph, which is again denoted by   , is 

obviously a tree. 

iv. Apply transformation       for every remaining thin edge of   . We denote the 

tree obtained after this procedure by    .  

 

It is easy to see that tree     is isomorphic to   , which proves that    is a tree.                    □ 

  

Let            . We define the weights            
  and             

  as in 

Corollary 3.5, so in the same way as in the previous subsection. Therefore, by using the 

mentioned corollary, we arrive to the following theorem. 

 

Theorem 4.5. If   is a tree-like polyphenyl system, then  
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Similarly as for the benzenoid systems [10] it can be shown that every quotient tree 

  ,            , of a tree-like polyphenyl system can be computed in linear time with 

respect to the number of vertices. It is also straightforward to determine the corresponding 

weights. Therefore, by Lemma 4.2 and Theorem 4.5 we obtain the following result. 

 

Proposition 4.6. If   is a tree-like polyphenyl system on   vertices, then the Mostar index 

      can be computed in      time.  

 

To conclude this subsection, we present how Theorem 4.5 can be used to calculate 

the closed-form formula for the Mostar index of an infinite family of polyphenyl 

chains. Some additional definitions are firstly needed. 

A polyphenyl chain is a tree-like polyphenyl system in which every hexagon is 

adjacent to at most two other hexagons. Moreover, every hexagon adjacent to exactly two 

other hexagons is called internal. 

Let    be an internal hexagon of a polyphenyl chain and let     be the vertices of 

   incident to the two edges that connect    with the other two hexagons. If the distance 

between   and   equals 3, then    is a para-hexagon [5]. A polyphenyl chain with   

hexagons is a para-polyphenyl chain, denoted as     , if every internal hexagon is a para-

hexagon. See Figure 7. 
 

  

 

Figure 7: Para-polyphenyl chain with   hexagons,     . 

  

In the next proposition, we deduce the closed-form formula for an arbitrary para-

polyphenyl chain with   hexagons. 

 

Proposition 4.7. If      is a para-polyphenyl chain with   hexagons, then  

          {
                    

                  
 

  

Proof. In order to apply Theorem 4.5, we have to determine the weighted quotient trees. In 

Figure 8 we can see the edges in the set    and weighted quotient tree            . It is 

easy to observe that for the edges (on hexagons) of other two directions,    and   , we 

obtain the same weighted quotient trees. On the other hand, the edges in the set   , together 

with the weighted quotient tree            , are shown in Figure 9. 
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Figure 8: (a) The edges in the set    and (b) the weighted quotient tree             

on     vertices for graph     . 

  

Figure 9: (a) The edges in the set    and (b) the weighted quotient tree 

            on   vertices for graph     . 

  

Firstly, assume that   is an even number. We can now compute  

                ∑  
 

 

   
                      

                ∑  
   

 

   
                   

 

 Therefore, by Theorem 4.5 we have  

                                                

Finally, let   be an odd number. By using a similar procedure as above, one can deduce  

                ∑  
   

 

   
                        

                ∑  
   

 

   
                     

which finally leads to  

                                                   

Therefore, the proof is complete.                                                                                             

 

Note that polyphenyl systems from Figures 6 and 7 can be embedded into the 

regular hexagonal lattice without overlapping hexagons. However, it is important to point 

out that according to Theorem 4.5, our method can be applied also to tree-like polyphenyl 

systems that cannot be embedded into the regular hexagonal lattice. 
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4.3. A FULLERENE PATCH 

A fullerene   is a 3-regular plane graph with only pentagonal and hexagonal faces. If   is 

an elementary cycle in  , then   partitions the plane into two open regions. A patch of   is 

defined as the graph obtained from   by deleting all vertices (and edges) in the interior of 

one of the two regions [17]. 

In this subsection, we apply our method to compute the Mostar index of a patch that 

is obtained from the well known buckminsterfullerene    . Therefore, let   be the graph 

shown in Figure 10 (a). However, graph   also belongs to another family of important 

chemical structures called nanocones. Generally speaking, nanocones are planar graphs 

where the inner faces are mostly hexagons, but there can be also some non-hexagonal inner 

faces, most commonly pentagons. 

Firstly, we have to determine the   -classes of  , which are denoted by 

  ,   ,   ,   ,   ,    and shown in Figure 10 (b). Note that the   -classes of   were 

already obtained in [24], where the revised edge-Szeged index was computed for this 

graph. For an infinite family of nanocones, the   -classes were also considered in 

[2]. However, here we will use another partition of the set      and therefore obtain 

different quotient graphs. It turns out that for graph   relation   is not transitive and 

hence,   is not a partial cube. 

   

   

Figure 10:  (a) Graph   and (b) the   -classes of  . 

  

 

Let       and                  . Obviously,         is a c-partition 

of     . Next, the weighted quotient graphs             and             can be easily 

determined, see Figure 11. As in Section 3, the graph    denotes the quotient graph      

for        . Moreover, the weights are calculated as in Corollary 3.5. 
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Figure 11: Weighted quotient graphs: (a)             and (b)            . 

  

 

It is obvious that                . Moreover, to calculate              , we 

consider just two types of edges, i.e. the five edges that have the central vertex for an end-

vertex and the remaining ten edges. Therefore, by Corollary 3.5 the calculation of the 

Mostar index becomes trivial:  

 

                                   

                            

                                     

                   

It is also interesting to consider a wider family of nanocones that were, for 

example, investigated in [1]. More precisely, a single-defect  -gonal nanocone, denoted as 

       , is obtained by taking a cycle on   vertices and surrounding it by   concentric 

layers of hexagons. By using the cut method, Mostar indices of these graphs were already 

calculated in [2]. 
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