The Expected Values of Merrifield-Simmons Index in Random Phenylene Chains

Lina Wei ${ }^{1}$, Hong Bian ${ }^{\text {1,•• }}$, Haizheng Yu ${ }^{\mathbf{2}}$ and Jili Ding ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. China
${ }^{2}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China

ARTICLE INFO

Article History:
Received: 28 June 2020
Accepted: 12 August 2020
Published online: 30 December 2020
Academic Editor: Akbar Ali

Keywords:

Merrifield-Simmons index
Phenylene chains
Independent sets

ABSTRACT

The Merrifield-Simmons index of a graph G is the number of independent sets in G. In this paper, we give exact formulae for the expected value of the Merrifield-Simmons index of random phenylene chains by means of auxiliary graphs.
© 2020 University of Kashan Press. All rights reserved

1. Introduction

In 1980, the chemists Merrifield and Simmoms elaborated a theory aimed at describing molecular structure by means of finite-set topology, their theory was not particularly successful. However, the topological formalism attracted the attention of colleagues and eventually became known as the Merrifield-Simmons index. This was the number of independent sets of vertices of the graph corresponding to that topology [1], and a series of articles were published [2-5].

The Merrifield-Simmons index is a typical example of graph invariants used in mathematical chemistry for quantifying relevant details of molecular structure. In recent years, a lot of work has been done on the extremal problem for it. For a survey of results and techniques related to the Hosoya index and Merrifield-Simmons index, see [6]. For recent works, see [7-9]. Chen et al. give six-membered ring spiro chains with extremal

[^0]Merrifield-Simmons index and Hosoya index, [10]. Li et al. give the Hosoya polynomials of general spiro hexagonal chains [11], and Wiener index and Kirchhoff index of spiro chain were given by Peng [12, 13]. Bai et al. give the exact formulae of extremal Merrifield-Simmons index and Hosoya index of polyphenylene chains, [14]. In 2015, Chen gives Merrifield-Simmons index in random phenylene chains and random hexagon chains [15]. In 2019, Liu et al. give the expected values of Hosoya index and Merrifield-Simmons index in a random spiro chains [16].

In this paper, we will present explicit formulae for the expected values of the Merrifield-Simmons index of random phenylene chains. The results obtained by considering several auxiliary graphs.

2. Preliminaries

All graphs considered here are finite and simple. For a given graph $G=(V ; E)$, the set of its vertices is denoted by V and the set of its edges by E. For a vertex $u \in V$ by $G-u$ we denote the graph induced by $V-\{u\}$. The closed neighborhood of a vertex v is denoted by $N[v]$.

A set $S \in V$ of vertices of G is an independent set in G if no two vertices of S are adjacent. $i_{k}(G)$ denote the number of independent set in G with k vertices. Obviously, $i_{0}(G)=1$ and $i_{1}(G)=|V|$. The total number of independent sets in G is denoted by $i(G)=\sum_{k \geq 0} i_{k}(G)$. In chemical literature, $i(G)$ is known as the MerrifieldSimmons index.

The following results belong to the mathematical folklore and will be used in the computations [16].

1. If v is a vertex of G, then

$$
\begin{equation*}
i(G)=i(G-v)+i(G-N[v]), \tag{1}
\end{equation*}
$$

2. If G is a graph with components $G_{1}, G_{2}, \ldots, G_{k}$, then

$$
\begin{equation*}
i(G)=\prod_{i=1}^{k} i\left(G_{i}\right) \tag{2}
\end{equation*}
$$

3. $i\left(P_{1}\right)=2, i\left(P_{2}\right)=3, i\left(P_{3}\right)=5, i\left(P_{4}\right)=8, i\left(P_{5}\right)=13$ and $i\left(C_{6}\right)=18$, where P_{n} is the path on n vertices and C_{n} is the cycle on n vertices.

Let H be a cata-condensed hexagonal system. If a hexagon r has one neighbouring hexagon, then it is said to be terminal, and if it has three neighbouring hexagons, to be branched. If a hexagon adjacent to exactly two other hexagons is a kink if r possess two adjacent vertices of degree two, is linear otherwise. The dualist graph of H consists of vertices corresponding to hexagons of H, two vertices are adjacent if and only if the corresponding hexagons have a common edge. Obviously, the dualist graph of H is a
tree. If H has n hexagons, then this tree has n vertices and none of its vertices have degree greater than three. A cata-condensed hexagonal system with no branched hexagons is said to be a hexagonal chain. A hexagonal chain with no kink is said to be a linear chain.

Let H be a cata-condensed hexagonal system with a least two hexagons. If we insert quadrilaterals (face where boundary is a 4 - cycle) between all pair of adjacent hexagons of H, the obtained graph G is called a phenylene. We say that H is the hexagonal squeeze of G. A phenylene containing n hexagons is called an $[n]$ - phenylene. Clearly, there is one to one correspondence between a phenylene and its hexagonal squeeze, both possess the same number of hexagons. In addition, a phenylene with n hexagons has $n-1$ squares. The number of vertices of a phenylene and its hexagonal squeeze are $6 n$ and $4 n+2$, respectively. A phenylene chain with n hexagons can be regarded as a phenylene chain G_{n}, see Figure 1.

Figure 1: Examples of phenylene chain G_{4}
A phenylene chain G_{n} with n hexagons can be regard as a phenylene chain G_{n-1} with $n-1$ hexagons to which new terminal quadrilateral and hexagon have been adjoined, see Figure 2.

Figure 2: A phenylene chain G_{n} with n hexagons

For $n \geq 3$, the terminal quadrilateral and hexagon can be attached in three ways, which results in the local arrangement we describe as $G_{n}^{1}, G_{n}^{2}, G_{n}^{3}$, see Figure 3 .

Figure 3: The three types of phenylene chains $G_{n}^{1}, G_{n}^{2}, G_{n}^{3}$, respectively.

A random phenylene chain $G_{n}(p, 1-2 p, p)$ with n hexagons is a phenylene chain obtained by stepwise addition of terminal quadrilateral and hexagon. At each step k ($k \geq$ 3), a random selection is made from one of the three possible constructions:

1. $G_{n-1} \rightarrow G_{n}^{1}$ with probability p,
2. $G_{n-1} \rightarrow G_{n}^{2}$ with probability $1-2 p$,
3. $G_{n-1} \rightarrow G_{n}^{3}$ with probability p;
where the probability p is a constant, satisfies the condition $0 \leq q \leq \frac{1}{2}$. Specially, the random phenylene chain $G_{n}(0,1,0)$ is the linear phenylene chain.

3. The Expected Values of Merrifield-Simmons Index of a Random Phenylene Chain

As described above, the phenylene chain $G_{n}(p, 1-2 p, p)$ is obtained at random by attaching to G_{n-1} new quadrilateral and hexagon from one of the three possible constructions. The process is a zeroth-order Markov process. For $G_{n}(p, 1-2 p, p)$, the Merrifield-Simmons index is a random variable. In this section, we will obtain a simple exact formula of its expected values $E\left(i\left(G_{n}\right)\right)$. The results are obtained by considering auxiliary graphs. There are four types of auxiliary fandom graphs A_{k}, B_{k} and \hat{A}_{k}, \hat{B}_{k}, where $A_{k} \in\left\{A_{k}^{1}, A_{k}^{2}, A_{k}^{3}\right\}, B_{k} \in\left\{B_{k}^{1}, B_{k}^{2}, B_{k}^{3}\right\}$, and $\hat{A}_{k} \in\left\{\hat{A}_{k}^{1}, \hat{A}_{k}^{2}, \hat{A}_{k}^{3}\right\}, \hat{B}_{k} \in\left\{\hat{B}_{k}^{1}, \hat{B}_{k}^{2}, \hat{B}_{k}^{3}\right\}$, are shown in Figure 4, 5, 6, 7, respectively.

Figure 4: Graphs of $A_{n-2}^{1}, A_{n-2}^{2}, A_{n-2}^{3}$, respectively.

Figure 5: Graphs of $B_{n-2}^{1}, B_{n-2}^{2}, B_{n-2}^{3}$, respectively.

Figure 6: Graphs of $\hat{A}_{n-2}^{1}, \hat{A}_{n-2}^{2}, \hat{A}_{n-2}^{3}$, respectively.

Figure 7: Graphs of $\hat{B}_{n-2}^{1}, \hat{B}_{n-2}^{2}, \hat{B}_{n-2}^{3}$, respectively.
If $G_{n}=G_{n}^{1}$ in Figure 2, then by (1) and (2), we have

$$
\begin{align*}
i\left(G_{n}\right) & =i\left(G_{n}-v_{1}\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(G_{n}-v_{1}-v_{2}\right)+i\left(G_{n}-v_{1}-N\left[v_{2}\right]\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(P_{4}\right) i\left(G_{n-1}\right)+i\left(P_{3}\right) i\left(A_{n-2}\right)+i\left(P_{3}\right) i\left(B_{n-2}\right) \tag{3}\\
& =8 i\left(G_{n-1}\right)+5 i\left(A_{n-2}\right)+5 i\left(B_{n-2}\right)
\end{align*}
$$

Similarly, if $G_{n}=G_{n}^{2}$,

$$
\begin{align*}
i\left(G_{n}\right) & =i\left(G_{n}-v_{1}\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(G_{n}-v_{1}-v_{2}\right)+i\left(G_{n}-v_{1}-N\left[v_{2}\right]\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(P_{4}\right) i\left(G_{n-1}\right)+i\left(P_{3}\right) i\left(\hat{A}_{n-2}\right)+i\left(P_{3}\right) i\left(A_{n-2}\right) \tag{4}\\
& =8 i\left(G_{n-1}\right)+5 i\left(\hat{A}_{n-2}\right)+5 i\left(A_{n-2}\right)
\end{align*}
$$

If $G_{n}=G_{n}^{3}$, we have

$$
\begin{align*}
i\left(G_{n}\right) & =i\left(G_{n}-v_{1}\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(G_{n}-v_{1}-v_{2}\right)+i\left(G_{n}-v_{1}-N\left[v_{2}\right]\right)+i\left(G_{n}-N\left[v_{1}\right]\right) \\
& =i\left(P_{4}\right) i\left(G_{n-1}\right)+i\left(P_{3}\right) i\left(\hat{B}_{n-2}\right)+i\left(P_{3}\right) i\left(\hat{A}_{n-2}\right) \tag{5}\\
& =8 i\left(G_{n-1}\right)+5 i\left(\hat{B}_{n-2}\right)+5 i\left(\hat{A}_{n-2}\right)
\end{align*}
$$

Now, we search the case of auxiliary graphs A_{n-2}, B_{n-2} and $\hat{A}_{n-2}, \hat{B}_{n-2}$. If $A_{n-2}=$ A_{n-2}^{1}, we have

$$
\begin{aligned}
i\left(A_{n-2}\right) & =i\left(A_{n-2}-v_{1}\right)+i\left(A_{n-2}-N\left[v_{1}\right]\right) \\
& =i\left(A_{n-2}-v_{1}-v_{2}\right)+i\left(A_{n-2}-v_{1}-N\left[v_{2}\right]\right)+i\left(A_{n-2}-N\left[v_{1}\right]\right) \\
& =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(A_{n-3}\right)+i\left(P_{2}\right) i\left(B_{n-3}\right) \\
& =3 i\left(G_{n-2}\right)+i\left(A_{n-3}\right)+3 i\left(B_{n-3}\right)
\end{aligned}
$$

Similarly, if $A_{n-2}=A_{n-2}^{2}$, then

$$
\begin{align*}
i\left(A_{n-2}\right) & =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(\hat{A}_{n-3}\right)+i\left(P_{2}\right) i\left(A_{n-3}\right) \tag{7}\\
& =3 i\left(G_{n-2}\right)+i\left(\hat{A}_{n-3}\right)+3 i\left(A_{n-3}\right),
\end{align*}
$$

if $A_{n-2}=A_{n-2}^{3}$, we have

$$
\begin{align*}
i\left(A_{n-2}\right) & =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(\hat{B}_{n-3}\right)+i\left(P_{2}\right) i\left(\hat{A}_{n-3}\right) \tag{8}\\
& =3 i\left(G_{n-2}\right)+i\left(\hat{B}_{n-3}\right)+3 i\left(\hat{A}_{n-3}\right) .
\end{align*}
$$

If $B_{n-2}=B_{n-2}^{1}$, then

$$
\begin{align*}
i\left(B_{n-2}\right) & =i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(A_{n-3}\right)+i\left(P_{3}\right) i\left(B_{n-3}\right) \\
& =5 i\left(G_{n-2}\right)+3 i\left(A_{n-3}\right)+5 i\left(B_{n-3}\right), \tag{9}
\end{align*}
$$

If $B_{n-2}=B_{n-2}^{2}$, then

$$
\begin{align*}
i\left(B_{n-2}\right) & =i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(\hat{A}_{n-3}\right)+i\left(P_{3}\right) i\left(A_{n-3}\right) \\
& =5 i\left(G_{n-2}\right)+3 i\left(\hat{A}_{n-3}\right)+5 i\left(A_{n-3}\right) \tag{10}
\end{align*}
$$

If $B_{n-2}=B_{n-2}^{3}$, then

$$
\begin{align*}
i\left(B_{n-2}\right) & =i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(\hat{B}_{n-3}\right)+i\left(P_{3}\right) i\left(\hat{A}_{n-3}\right) \tag{11}\\
& =5 i\left(G_{n-2}\right)+3 i\left(\hat{B}_{n-3}\right)+5 i\left(\hat{A}_{n-3}\right)
\end{align*}
$$

If $\hat{A}_{n-2}=\hat{A}_{n-2}^{1}$, then

$$
\begin{align*}
i\left(\hat{A}_{n-2}\right) & =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(A_{n-3}\right)+i\left(B_{n-3}\right) \tag{12}\\
& =3 i\left(G_{n-2}\right)+3 i\left(A_{n-3}\right)+i\left(B_{n-3}\right),
\end{align*}
$$

If $\hat{A}_{n-2}=\hat{A}_{n-2}^{2}$, then

$$
\begin{align*}
i\left(\hat{A}_{n-2}\right) & =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(\hat{A}_{n-3}\right)+i\left(A_{n-3}\right) \tag{13}\\
& =3 i\left(G_{n-2}\right)+3 i\left(\hat{A}_{n-3}\right)+i\left(A_{n-3}\right)
\end{align*}
$$

If $\hat{A}_{n-2}=\hat{A}_{n-2}^{3}$, then

$$
\begin{align*}
i\left(\hat{A}_{n-2}\right) & =i\left(P_{2}\right) i\left(G_{n-2}\right)+i\left(P_{2}\right) i\left(\hat{B}_{n-3}\right)+i\left(\hat{A}_{n-3}\right) \tag{14}\\
& =3 i\left(G_{n-2}\right)+3 i\left(\hat{B}_{n-3}\right)+i\left(\hat{A}_{n-3}\right),
\end{align*}
$$

If $\hat{B}_{n-2}=\hat{B}_{n-2}^{1}$, then

$$
\begin{align*}
i\left(\hat{B}_{n-2}\right) & =i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{3}\right) i\left(A_{n-3}\right)+i\left(P_{2}\right) i\left(B_{n-3}\right) \tag{15}\\
& =5 i\left(G_{n-2}\right)+5 i\left(A_{n-3}\right)+3 i\left(B_{n-3}\right)
\end{align*}
$$

If $\widehat{B}_{n-2}=\hat{B}_{n-2}^{2}$, then

$$
\begin{align*}
i\left(\hat{B}_{n-2}\right) & =i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{3}\right) i\left(\hat{A}_{n-3}\right)+i\left(P_{2}\right) i\left(A_{n-3}\right) \tag{16}\\
& =5 i\left(G_{n-2}\right)+5 i\left(\hat{A}_{n-3}\right)+3 i\left(A_{n-3}\right),
\end{align*}
$$

If $\hat{B}_{n-2}=\hat{B}_{n-2}^{3}$, then

$$
i\left(\widehat{B}_{n-2}\right)=i\left(P_{3}\right) i\left(G_{n-2}\right)+i\left(P_{3}\right) i\left(\hat{B}_{n-3}\right)+i\left(P_{2}\right) i\left(\hat{A}_{n-3}\right)
$$

$$
\begin{equation*}
=5 i\left(G_{n-2}\right)+5 i\left(\hat{B}_{n-3}\right)+3 i\left(\hat{A}_{n-3}\right), \tag{17}
\end{equation*}
$$

From above, we can get the expected values $E\left(i\left(G_{n}\right)\right), E\left(i\left(A_{n-2}\right)\right), E\left(i\left(B_{n-2}\right)\right)$, $E\left(i\left(\hat{A}_{n-2}\right)\right), E\left(i\left(\hat{B}_{n-2}\right)\right)$ of $i\left(G_{n}\right), i\left(A_{n-2}\right), i\left(B_{n-2}\right), i\left(\hat{A}_{n-2}\right), i\left(\hat{B}_{n-2}\right)$, respectively.

From (3), (4), (5), we have

$$
\begin{align*}
E\left(i\left(G_{n}\right)\right)= & p E\left(i\left(G_{n}^{1}\right)\right)+(1-2 p) E\left(i\left(G_{n}^{2}\right)\right)+p E\left(i\left(G_{n}^{3}\right)\right) \\
= & 8 p E\left(i\left(G_{n-1}\right)\right)+5 p E\left(i\left(A_{n-2}\right)\right)+5 p E\left(i\left(B_{n-2}\right)\right)+8(1-2 p) E\left(i\left(G_{n-1}\right)\right) \\
& +5(1-2 p) E\left(i\left(\hat{A}_{n-2}\right)\right)+5(1-2 p) E\left(i\left(A_{n-2}\right)\right)+8 p E\left(i\left(G_{n-1}\right)\right) \tag{18}\\
& +5 p E\left(i\left(\hat{B}_{n-2}\right)\right)+5 p E\left(i\left(\hat{A}_{n-2}\right)\right) \\
= & 8 E\left(i\left(G_{n-1}\right)\right)+(5-5 p) E\left(i\left(A_{n-2}\right)\right)+5 p E\left(i\left(B_{n-2}\right)\right) \\
& +(5-5 p) E\left(i\left(\hat{A}_{n-2}\right)\right)+5 p E\left(i\left(\hat{B}_{n-2}\right)\right)
\end{align*}
$$

From (6), (7), (8), we have

$$
\begin{align*}
E\left(i\left(A_{n-2}\right)\right)= & p E\left(i\left(A_{n-2}^{1}\right)\right)+(1-2 p) E\left(i\left(A_{n-2}^{2}\right)\right)+p E\left(i\left(A_{n-2}^{3}\right)\right) \\
= & 3 E\left(i\left(G_{n-2}\right)\right)+(3-5 p) E\left(i\left(A_{n-3}\right)\right)+3 p E\left(i\left(B_{n-3}\right)\right) \tag{19}\\
& +(1+p) E\left(i\left(\hat{A}_{n-3}\right)\right)+p E\left(i\left(\hat{B}_{n-3}\right)\right) .
\end{align*}
$$

From (9), (10), (11), we have

$$
\begin{align*}
E\left(i\left(B_{n-2}\right)\right)= & p E\left(i\left(B_{n-2}^{1}\right)\right)+(1-2 p) E\left(i\left(B_{n-2}^{2}\right)\right)+p E\left(i\left(B_{n-2}^{3}\right)\right) \\
= & 5 E\left(i\left(G_{n-2}\right)\right)+(5-7 p) E\left(i\left(A_{n-3}\right)\right)+5 p E\left(i\left(B_{n-3}\right)\right) \tag{20}\\
& +(3-p) E\left(i\left(\hat{A}_{n-3}\right)\right)+3 p E\left(i\left(\hat{B}_{n-3}\right)\right) .
\end{align*}
$$

From (12), (13), (14), we have

$$
\begin{align*}
E\left(i\left(\hat{A}_{n-2}\right)\right)= & p E\left(i\left(\hat{A}_{n-2}^{1}\right)\right)+(1-2 p) E\left(i\left(\hat{A}_{n-2}^{2}\right)\right)+p E\left(i\left(\hat{A}_{n-2}^{3}\right)\right) \\
= & 3 E\left(i\left(G_{n-2}\right)\right)+(1+p) E\left(i\left(A_{n-3}\right)\right)+p E\left(i\left(B_{n-3}\right)\right) \tag{21}\\
& +(3-5 p) E\left(i\left(\hat{A}_{n-3}\right)\right)+3 p E\left(i\left(\hat{B}_{n-3}\right)\right) .
\end{align*}
$$

From (15), (16), (17), we have

$$
\begin{align*}
E\left(i\left(\hat{B}_{n-2}\right)\right)= & p E\left(i\left(\hat{B}_{n-2}^{1}\right)\right)+(1-2 p) E\left(i\left(\hat{B}_{n-2}^{2}\right)\right)+p E\left(i\left(\hat{B}_{n-2}^{3}\right)\right) \\
= & 5 E\left(i\left(G_{n-2}\right)\right)+(3-p) E\left(i\left(A_{n-3}\right)\right)+3 p E\left(i\left(B_{n-3}\right)\right) \tag{22}\\
& +(5-7 p) E\left(i\left(\hat{A}_{n-3}\right)\right)+5 p E\left(i\left(\hat{B}_{n-3}\right)\right)
\end{align*}
$$

From (18), (19), (20), (21), (22), we have

$$
\begin{aligned}
E\left(i\left(G_{n}\right)\right)= & 8 E\left(i\left(G_{n-1}\right)\right)+(30+20 p) E\left(i\left(G_{n-2}\right)\right)+\left(20-20 p^{2}\right) E\left(i\left(A_{n-3}\right)\right) \\
& +\left(20 p+20 p^{2}\right) E\left(i\left(B_{n-3}\right)\right)+\left(20-20 p^{2}\right) E\left(i\left(\hat{A}_{n-3}\right)\right) \\
& +\left(20 p+20 p^{2}\right) E\left(i\left(\hat{B}_{n-3}\right)\right),
\end{aligned}
$$

andwith the same method, we have

$$
\begin{align*}
E\left(i\left(G_{n}\right)\right)= & 8 E\left(i\left(G_{n-1}\right)\right)+(30+20 p) E\left(i\left(G_{n-2}\right)\right)+\left(120+200 p+80 p^{2}\right) E\left(i\left(G_{n-3}\right)\right) \\
& +\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(A_{n-4}\right)\right)+\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(B_{n-4}\right)\right) \tag{23}\\
& +\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(\hat{A}_{n-4}\right)\right)+\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(\hat{B}_{n-4}\right)\right) .
\end{align*}
$$

From above (19), (20), (21), (22), we have

$$
\begin{align*}
& \left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(A_{n-4}\right)\right)+\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(B_{n-4}\right)\right) \\
+\quad & \left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(\hat{A}_{n-4}\right)\right)+\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(\hat{B}_{n-4}\right)\right) \\
=\quad & \left(480+1280 p+1120 p^{2}+320 p^{3}\right) E\left(i\left(G_{n-4}\right)\right) \\
& +(4+4 p)\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(A_{n-5}\right)\right) \tag{24}\\
& +(4+4 p)\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(B_{n-5}\right)\right) \\
& +(4+4 p)\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(\hat{A}_{n-5}\right)\right) \\
& +(4+4 p)\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(\hat{B}_{n-5}\right)\right) .
\end{align*}
$$

Let

$$
\begin{align*}
H & =(4+4 p)\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(A_{n-5}\right)\right)+(4+4 p)\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(B_{n-5}\right)\right) \\
+ & (4+4 p)\left(80+80 p-80 p^{2}-80 p^{3}\right) E\left(i\left(\hat{A}_{n-5}\right)\right)+(4+4 p)\left(80 p+160 p^{2}+80 p^{3}\right) E\left(i\left(\hat{B}_{n-5}\right)\right) \tag{25}
\end{align*}
$$

From (23), (24), (25), we have

$$
\begin{aligned}
H= & (4+4 p)\left[E\left(i\left(G_{n-1}\right)\right)-8 E\left(i\left(G_{n-2}\right)\right)\right. \\
& \left.-(30+20 p) E\left(i\left(G_{n-3}\right)\right)-\left(120+200 p+80 p^{2}\right) E\left(i\left(G_{n-4}\right)\right)\right]
\end{aligned}
$$

From (23), (24), (25), then

$$
\begin{equation*}
E\left(i\left(G_{n}\right)\right)=(12+4 P) E\left(i\left(G_{n-1}\right)\right)-(2+12 p) E\left(i\left(G_{n-2}\right)\right) \tag{26}
\end{equation*}
$$

We know that

$$
E\left(i\left(G_{1}\right)\right)=E\left(i\left(C_{6}\right)\right)=18, E\left(i\left(G_{2}\right)\right)=274
$$

Theorem 3.1. The expected value of the Merrifield-Simmons index of a random phenylene chain $G_{n}(p, 1-2 p, p)$ is

$$
\begin{align*}
E\left(i\left(G_{n}\right)\right) & =\frac{192-50 p-72 p^{2}+(-29+36 p) \sqrt{4 p^{2}+12 p+34}}{(2+12 p) \sqrt{4 p^{2}+12 p+34}}\left(6+2 p+\sqrt{4 p^{2}+12 p+34}\right)^{n} \\
& -\frac{192-50 p-72 p^{2}-(-29+36 p) \sqrt{4 p^{2}+12 p+34}}{(2+12 p) \sqrt{4 p^{2}+12 p+34}}\left(6+2 p-\sqrt{4 p^{2}+12 p+34}\right)^{n} . \tag{27}
\end{align*}
$$

Proof. From (26), we know that

$$
E\left(i\left(G_{n}\right)\right)=(12+4 P) E\left(i\left(G_{n-1}\right)\right)-(2+12 p) E\left(i\left(G_{n-2}\right)\right)
$$

and

$$
E\left(i\left(G_{1}\right)\right)=E\left(i\left(C_{6}\right)\right)=18, E\left(i\left(G_{2}\right)\right)=274 .
$$

Next, we use the second order method for solving the recurrence relation with constant coefficient. It is well known that $x^{2}-(12+4 p) x+(2+12 p)=0$ is the characteristic equation of the recursive relationship $E\left(i\left(G_{n}\right)\right)=(12+4 p) E\left(i\left(G_{n-1}\right)\right)-$ $(2+12 p) E\left(i\left(G_{n-2}\right)\right)$, the characteristic root of this characteristic equation is

$$
p_{1}=\frac{12+4 p+2 \sqrt{4 p^{2}+12 p+34}}{2}, p_{2}=\frac{12+4 p-2 \sqrt{4 p^{2}+12 p+34}}{2}
$$

Let

$$
E\left(i\left(G_{n}\right)\right)=A p_{1}^{n}-B p_{2}^{n} .
$$

We know that

$$
E\left(i\left(G_{1}\right)\right)=A p_{1}-B p_{2}=18, E\left(i\left(G_{2}\right)\right)=A p_{1}^{2}-B p_{2}^{2}=274 .
$$

Then

$$
\operatorname{red} A=\frac{274-18 p_{1}}{p_{2}^{2}-p_{1} p_{2}}, B=\frac{274-18 p_{2}}{p_{1}^{2}-p_{1} p_{2}} .
$$

Finally, the result can be obtained.

Corollary 3.2. The Merrifield-Simmons index of linear phenylene chain L_{n} is

$$
i\left(L_{n}\right)=\frac{192-29 \sqrt{34}}{2 \sqrt{34}}(6+\sqrt{34})^{n}-\frac{192+29 \sqrt{34}}{2 \sqrt{34}}(6-\sqrt{34})^{n},
$$

and the Merrifield-Simmons index of all-kinky phenylene chain P_{n} is

$$
i\left(P_{n}\right)=\frac{149-11 \sqrt{41}}{8 \sqrt{41}}(7+\sqrt{41})^{n}-\frac{149+11 \sqrt{41}}{8 \sqrt{41}}(7-\sqrt{41})^{n} .
$$

Proof. From (27), when $p=0$ and $p=\frac{1}{2}$, respectively, we can get results.

4. The Average Values of the Merrifield-Simmons Index of a Random Phenylene Chain

Let \mathcal{G}_{n} be the set of all phenylene chain with n hexagons. The average value of the Merrifield-Simmons index with respect to \mathcal{G}_{n} is

$$
i_{a v r}\left(\mathcal{G}_{n}\right)=\frac{1}{\left|\mathcal{G}_{n}\right|} \sum_{G \in \mathcal{G}_{n}} i(G)
$$

In order to obtain the average value $i_{\text {avr }}\left(\mathcal{G}_{n}\right)$, we only need to take $p=\frac{1}{3}$ in the expected value $E\left(i\left(G_{n}\right)\right)$. From Theorem 3.1, we have

Theorem 4.1. The average value of the Merrifield-Simmons index with respect to \mathcal{G}_{n} is

$$
i_{a v r}\left(\mathcal{G}_{n}\right)=\frac{502-17 \sqrt{346}}{6 \sqrt{346}}\left(\frac{20+\sqrt{346}}{3}\right)^{n}-\frac{502+17 \sqrt{346}}{6 \sqrt{346}}\left(\frac{20-\sqrt{346}}{3}\right)^{n}
$$

Acknowledgement. Supported by NSFC (Grant No.11761070, 61662079). The $;^{\circ} 13$ th Five-Year $\ddagger \pm$ Plan for Key Discipline Mathematics (No: 20SDKD1102), Xinjiang Normal University. 2010 Postgraduate Innovation Project of Xinjiang. Xinjiang Normal University Undergraduate teaching project (SDJG2017-3).

REFERENCES

1. H. Abdo, R. E. Merrifield and H. E. Simmons, The structure of molecular topological spaces, Theor. Chim. Acta. 55 (1980) 55-57.
2. R. E. Merrifield and H. E. Simmons, Enumeration of strucure-sensitive graphical subset: theory, Proc. Natl. Acad. Sci. USA 78 (1981) 692-695.
3. R. E. Merrifield and H. E. Simmons, Enumeration of strucure-sensitive graphical subset: calculation. Proc. Natl. Acad. Sci. USA 78 (1981) 1329-1332.
4. R. E. Merrifield and H. E. Simmons, Topology of bonding in π-electron systems, Proc. Natl. Acad. Sci. USA 82 (1985) 1-3.
5. R. E. Merrifield and H. E. Simmons, Mathematical description of molecular structure; molecular topolygoy, Proc. Natl. Acad. Sci. USA 74 (1977) 2616-2619.
6. S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and Merrifield-Simmons index, Acta. Appl. Math. 112 (2010) 323-346.
7. E. O. D. Andriatiana, Energy, Hosoya index and Merrifield-Simmons index of trees with prescribed degree sequence, Discret. Appl. Math. 161 (2013) 724-741.
8. Y. Liu, W. Zhuang and Z. Liang, Largest Hosoya index and smallest MerrifieldSimmons index in tricyclic graph, MATCH Commun. Math. Comput. Chem. 73 (2015) 195-224.
9. Z. Zhu, C. Yuan, E. O. D. Andriantiana and S. Wagner, Graphs with maximal Hosoya index and minimal Merrifield-Simmons index, Discret Math. 329 (2014) 77-87.
10. X. Chen, B. Zhao and P. Zhao, Six-member ring spiro chains with extremal Merrifield-Simmons index and Hosoya index, MATCH Common. Math. Comput. Chem. 62 (2009) 657-665.
11. X. Li, X. Yang, G. Wang and R. Hu, Hosoya Polynomials of General Spiro Hexagonal Chains, Faculty of Science and Mathematics, University of Niš, Seria. 28 (1) (2014) 221-215.
12. H. Deng, Wiener indices of spiro and polyphenyl hexagonal chains, Math. Comput. Model. 55 (2012) 634-644.
13. H. Deng and Z. Tang, Kirchhoff indices of spiro and polyphenyl hexagonal chains, Util. Math. 95 (2014) 113-128.
14. Y. Bai, B. Zhao and P. Zhao, Extermal Merrifield-Simmons index and Hosoya index of polyphenyl chains, MATCH Commum Math Comput Chem. 62 (2019) 649-656.
15. T. Došlić and M. S. Litz, Matchings and independent sets in polyphenyl chains, MATCH Common Math Comput Chem. 67 (2012) 313-330.
16. B. Liu, H. Bian and H. Yu, The expected values of Hosoya index and MerrifieldSimmons index in random spiro chains, Ars Combinatoria 147 (2019) 323-336.

[^0]: -Corresponding Author (Email address: bh1218@ 163.com)
 DOI: 10.22052/ijmc.2020.237192.1508

