Odd-Even Effect Observed in the Electro-Optical Properties of the Homologous Series of HnCBP Liquid Crystal Studied under the Impact of the Electric Field: A Theoretical Approach

Document Type : Research Paper

Authors

1 Department of Physics, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow (U.P.) 226025 INDIA

2 Department of Physics, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow (U.P.) 226025 INDIA Email:dkclcre@yahoo.com

Abstract

The liquid crystal (LC) 4-4′-disubstituted biphenyls (HnCBP) of the general line formula HO-(CnH2n+1)-O-C6H4-C6H4-CN (n=1-12) shows the odd-even effect under the applied electric field. The odd-even effects are observed in the HOMO-LUMO gap, birefringence, order parameter, and dipole moment. The odd carbon atom number of alkyl chain shows HOMO-LUMO gap, birefringence and order parameter in the upward direction and even carbon atom number of alkyl chain shows in the downward direction; however the dipole moment exhibits a shift of even carbon number of alkyl chain in the upward direction and odd carbon number of alkyl chain in the downward direction.

Keywords


  1.  

    1. R. P. G. De Gennes, The Physics of Liquid Crystal, Clarendon Press, London and New York, 1974.
    2. S. Chandrasekhar, Liquid crystals, Rep. Prog. Phys. 39 (1976) 613-692.
    3. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer, Berlin, 1994.
    4. F. Reinitzer, Beiträge zur Kenntniss des Cholesterins, Monatsh. Chem. 9 (1888) 421-444.
    5. O. Lehmann, Über fliessende krystalle, Z. Phys. Chem. 4 (1889) 462-472.
    6. M. I. Capar and E. Cebe, Odd–Even effects in the homologous series of alkyl-cyanobiphenyl liquid crystals: A molecular dynamic study, J. Comput. Chem. 28 (2007) 2140-2146.
    7. J. R. Lalanne, B. Lemaire, J. Rouch, C. Vaucamps and A. Proutiere, The even-odd effect in liquid crystal: A collective or intrinsic molecular property, J. Chem. Phys. 73 (1980) 1927-1931. 
    8. J. R. Lalanne, J. C. Rayez, B. Duguay, A. Proutiere and R. Viani, Molecular aspect of the even–odd effect in cyanobiphenyls (nCB): Theoretical studies of the molecular geometrical conformation and optical anisotropy. I. n ≤ 6, J. Chem. Phys. 81 (1984) 344-348.
    9. P. Zugenmaier and A. Heiske, The molecular and crystal structures of a homologous series of bipolar, mesogenic biphenyls–HO(CH2)nOC6H4.C6H4CN, Liq. Cryst. 15 (1993) 835-849.
    10. R. K. Srivastav, M. Roychoudhury, J. Kumar and D. Kumar, Correlation of mesogenic properties with intermolecular interaction energy for homologous series of HnCBP, Mol. Cryst. Liq. Cryst. 652 (2017) 51-66.
    11. M. Roychoudhury and R. K. Srivastav, Analysis of pair interaction in a bipolar mesogen 4-(4-Hydroxylbutyloxy)-40-cyano-biphenyl: A comparative study based on semiempirical and DFT methods, Inter. J. Quantum Chem. 111 (2011) 4113-4123.
    12. T. W. Stinson and J. D. Litster, Pretransitional phenomena in the isotropic phase of a nematic liquid crystal, Phys. Rev. Lett. 25 (1970) 503-506.
    13. A. G. Gilani, Dielectric and electro-optical properties of some cyanobiphenyl liquid-crystals, Ph.D. Thesis, Kent State University, Kent, 1995.
    14. L. Vicari, Optical Applications of Liquid Crystals, Taylor & Francis, Series in Optics and Optoelectronics, 2003.
    15. M. J. Aroney, W. P. McPherson and R. K. Pierens, Electric Birefringence and solution-state conformations of molecules C6H5SM(CH3); M=C, Si, or Sn, J. Mol. Struct.69 (1980) 289-293.
    16. S. Pestev, Group VIII Advanced Materials and Technologies, V. Vill (Ed.)In:Physical Properties of Liquid Crystals, vol. 5A, pp. 26-40, Springer-Verlag Berlin Heidelberg, Berlin, 2003.
    17. I. H. Ibrahim and W.  Haase, On the Molecular Polarizability of Nematic Liquid Crystals, Mol. Cryst. Liq. Cryst. 66 (1981) 189-198.
    18. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics and M. Koch, Molecular properties of liquid crystals in the terahertz frequency range, Opt. Exp. 18 (2010) 6097-6107.
    19. W. Haase, H. Paulus and R. Pendzialek, Solid State Polymorphism in 4- Cyano-4'-n-Propylbiphenyl and X-Ray Structure Determination of the Higher Melting Modification, Mol. Cryst. Liq. Cryst. 100 (1983) 211-221.
    20. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus and W. A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun. 181 (2010) 1477-1489.
    21. A. D. Becke, Density-functional thermo chemistry. III. The role of exact exchange’s, J. Chem. Phys. 98 (1993) 5648-5652.
    22. C. Lee, W. Yang and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785−789.
    23. P. J. Hay and W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 (1985) 299-310.
    24. Y. Wang, F. Wang, J. Li, Z. Huang, S. Liang and J. Zhou, Molecular structure and electronic properties of triolein molecule under an external electric field related to streamer initiation and propagation, Energies 10 (4) (2017) 510, https://doi.org/10.3390/en10040510.
    25. N. Kumar, P. Singh, P. Upadhyay, S. Choudhary, K. B. Thapa, A. K. Dwivedi and D. Kumar, Odd–even effect of 7O.m liquid crystal compound series studied under the effect of the electric field by density functional theory (DFT) methods, Eur. Phys. J. Plus 135 (2020) 388.
    26. N. Kumar, P. Singh, K. B. Thapa and D. Kumar, Molecular spectroscopy and adverse optical properties of N-(p-hexyloxy-benzylidene)-p-toluidine(HBT) liquid crystal molecule studied by DFT methodology, IOP Sci. Notes 1 (2020) 015202.
    27. N. Kumar, S. Chaudhary, P. Singh, K. B. Thapa and D. Kumar, Electro-optical odd-even effect of APAPA liquid crystal molecules studied under the influence of an extraneous electric field (THz): A theoretical approach, J. Mol. Liq. 318 (2020) 114254.
    28. X. Wang, J. A. J. Fells, C. Welch, M-G. Tamba, G. H. Mehl, S. M. Morris and S. J. Elston, Characterization of large tilt-angle flexoelectro-optic switching in chiral nematic liquid crystal devices,  Liq. Cryst. 46 (3) (2019) 408-414.