Prediction of IC50 Values of 2−benzyloxybenzamide Derivatives using Multiple Linear Regression and Artificial Neural Network Methods

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran

Abstract

In this study, six molecular descriptors were selected from a pool of variables using stepwise regression to built a QSAR model for a series of 2-benzyloxy benzamide derivatives as an SMS2 inhibitor to reduce atherosclerosis. Simple multiple linear regression (MLR) and a nonlinear method, artificial neural network (ANN), were used to modeling the bioactivities of the compounds. Modeling was carried out in total with 34 compounds of 2-benzyl oxybenzamide derivatives. PCA was used to divide the compounds into two groups of two training series and tests. The model was constructed with 27 combinations as training set, then the validity and predictive ability of the model were evaluated with the remaining 7 combinations. While the MLR provides an acceptable model for predictions, the ANN-based model significantly improves the predictive ability. In ANN model the average relative error (RE%) of prediction set is lower than 1% and square correlation coefficient (R2) is 0.9912.

Keywords


[1] J. W. Gofman, F. Lindgren, H. Elliott, W. Mantz, J. Hewitt, B. Strisower, V. Herring, T. P. Lyon, The role of lipids and lipoproteins in atherosclerosis, Science 111 (1950) 166−186.
[2] J. Liu, H. Zhang, Z. Li, T. K. Hailemariam, M. Chakraborty, K. Jiang, D. Qiu, H. H. Bui, D. A. Peake, M. S. Kuo, Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice, Arterioscler. Thromb. Vasc. Biol. 29 (2009) 850−856.
[3] S. G. Nasab, A. Semnani, F. Marini, A. Biancolillo, Prediction of viscosity index and pour point in ester lubricants using quantitative structure-property relationship (QSPR), Chemom. Intell. Lab. Syst. 183 (2018) 59−78.
[4] Å. Nilsson, R. D. Duan, Absorption and lipoprotein transport of sphingomyelin, J. Lipid Res. 47 (2006) 154−171.
[5] A. Schlitt, S. Blankenberg, D. Yan, H. von Gizycki, M. Buerke, K. Werdan, C. Bickel, K. J. Lackner, J. Meyer, H. J. Rupprecht, Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease, Nutr. Metab. 3 (2006) 5.
[6] Y. Li, T. Huang, B. Lou, D. Ye, X. Qi, X. Li, S. Hu, T. Ding, Y. Chen, Y. Cao, Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor, Eur. J. Med. Chem. 163 (2019) 864−882.
[7] A. Habibi-Yangjeh, E. Pourbasheer, M. Danandeh-Jenagharad, Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water, Monatsh. Chem. 140 (2009) 15−27.
[8] A. Beheshti, E. Pourbasheer, M. Nekoei, A. Banaei, Quantitative structure-activity relationship study of amino acid derivatives as histone deacetylase inhibitors using the genetic algorithm–Multiple linear regression, Anal. Chem. Lett. 2 (2012) 33−43.
[9] M. Adimi, M. Salimi, M. Nekoei, E. Pourbasheer, A. Beheshti, A quantitative structure-activity relationship study on histamine receptor antagonists using the genetic algorithm-multi-parameter linear regression method, J. Serb. Chem. Soc. 77 (2012) 639−650.
[10] M. Ravi, A. J. Hopfinger, R. E. Hormann, L. Dinan, 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling, J. Chem. Inf. Comput. Sci. 41 (2001) 1587−1604.
[11] B. Luke, Comparison of three different QSAR/QSPR generation techniques, J. Mol. Struct. THEOCHEM 468 (1999) 13−20.
[12] P. Bruneau, Search for predictive generic model of aqueous solubility using Bayesian neural nets, J. Chem. Inf. Comput. Sci. 41 (2001) 1605−1616.
[13] A. R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U. Maran, Interpretation of quantitative structure− property and− activity relationships, J. Chem. Inf. Comput. Sci. 41 (2001) 679−685.
[14] P. C. Jurs, Computer software applications in chemistry, John Wiley & Sons, 1996.
[15] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biol. 5 (1943) 115−133.
[16] S. Asadpour, S. Jazayeri Farsani, S. Ghanavati Nasab, A. Semnani, QSAR Modeling of Some Derivatives of Thiazolidinedione With Antimalarial Properties, Frontiers in Chemical Research, 1 (2019) 17−24.
[17] S. Wold, L. Eriksson, S. Clementi, Statistical validation of QSAR results, Chemometric methods in molecular design, Weinheim 1995.
[18] P. Zhou, H. Mei, F. Tian, J. Wang, S. Wu, Z. Li, A new two-dimensional approach to quantitative prediction for collision cross-section of more than 110 singly protonated peptides by a novel moecular electronegativity-interaction vector through quantitative structure-spectrometry relationship studies, Front. Chem. China, 2 (2007) 55−63.
[19] M. Randic, Resolution of ambiguities in structure-property studies by use of orthogonal descriptors, J. Chem. Inf. Comput. Sci. 31 (1991) 311−320.
[20] M. Zakariazadeh, A. Barzegar, S. Soltani, H. Aryapour, Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity, Med. Chem. Res. 24 (2015) 2485−2504.
[21] A. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, O. Igglessi-Markopoulou, G. Kollias, A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs, Mol. Diversity 14 (2010) 225−235.
[22] J. Gasteiger, J. Zupan, Neural networks in chemistry, Angew. Chem. Int. Ed. Engl. 32 (1993) 503-527.
[23] D. W. Salt, N. Yildiz, D. J. Livingstone, C. J. Tinsley, The use of artificial neural networks in QSAR, Pestic. Sci. 36 (1992) 161−170.
[24] T. Aoyama, Y. Suzuki, H. Ichikawa, Neural networks applied to pharmaceutical problems. III. Neural networks applied to quantitative structure-activity relationship (QSAR) analysis, J. Med. Chem. 33 (1990) 2583−2590.
[25] W. Guo, P. Zhu, H. Brodowsky, The study for optimization of chromatographic condition by means of artificial neural networks, Talanta 44 (1997) 1995−2001.
[26] W. Guo, Y. Lu, X.M. Zheng, The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN, Talanta 51 (2000) 479−488.