[1] J. W. Gofman, F. Lindgren, H. Elliott, W. Mantz, J. Hewitt, B. Strisower, V. Herring, T. P. Lyon, The role of lipids and lipoproteins in atherosclerosis, Science 111 (1950) 166−186.
[2] J. Liu, H. Zhang, Z. Li, T. K. Hailemariam, M. Chakraborty, K. Jiang, D. Qiu, H. H. Bui, D. A. Peake, M. S. Kuo, Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice, Arterioscler. Thromb. Vasc. Biol. 29 (2009) 850−856.
[3] S. G. Nasab, A. Semnani, F. Marini, A. Biancolillo, Prediction of viscosity index and pour point in ester lubricants using quantitative structure-property relationship (QSPR), Chemom. Intell. Lab. Syst. 183 (2018) 59−78.
[4] Å. Nilsson, R. D. Duan, Absorption and lipoprotein transport of sphingomyelin, J. Lipid Res. 47 (2006) 154−171.
[5] A. Schlitt, S. Blankenberg, D. Yan, H. von Gizycki, M. Buerke, K. Werdan, C. Bickel, K. J. Lackner, J. Meyer, H. J. Rupprecht, Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease, Nutr. Metab. 3 (2006) 5.
[6] Y. Li, T. Huang, B. Lou, D. Ye, X. Qi, X. Li, S. Hu, T. Ding, Y. Chen, Y. Cao, Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor, Eur. J. Med. Chem. 163 (2019) 864−882.
[7] A. Habibi-Yangjeh, E. Pourbasheer, M. Danandeh-Jenagharad, Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water, Monatsh. Chem. 140 (2009) 15−27.
[8] A. Beheshti, E. Pourbasheer, M. Nekoei, A. Banaei, Quantitative structure-activity relationship study of amino acid derivatives as histone deacetylase inhibitors using the genetic algorithm–Multiple linear regression, Anal. Chem. Lett. 2 (2012) 33−43.
[9] M. Adimi, M. Salimi, M. Nekoei, E. Pourbasheer, A. Beheshti, A quantitative structure-activity relationship study on histamine receptor antagonists using the genetic algorithm-multi-parameter linear regression method, J. Serb. Chem. Soc. 77 (2012) 639−650.
[10] M. Ravi, A. J. Hopfinger, R. E. Hormann, L. Dinan, 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling, J. Chem. Inf. Comput. Sci. 41 (2001) 1587−1604.
[11] B. Luke, Comparison of three different QSAR/QSPR generation techniques, J. Mol. Struct. THEOCHEM 468 (1999) 13−20.
[12] P. Bruneau, Search for predictive generic model of aqueous solubility using Bayesian neural nets, J. Chem. Inf. Comput. Sci. 41 (2001) 1605−1616.
[13] A. R. Katritzky, R. Petrukhin, D. Tatham, S. Basak, E. Benfenati, M. Karelson, U. Maran, Interpretation of quantitative structure− property and− activity relationships, J. Chem. Inf. Comput. Sci. 41 (2001) 679−685.
[14] P. C. Jurs, Computer software applications in chemistry, John Wiley & Sons, 1996.
[15] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biol. 5 (1943) 115−133.
[16] S. Asadpour, S. Jazayeri Farsani, S. Ghanavati Nasab, A. Semnani, QSAR Modeling of Some Derivatives of Thiazolidinedione With Antimalarial Properties, Frontiers in Chemical Research, 1 (2019) 17−24.
[17] S. Wold, L. Eriksson, S. Clementi, Statistical validation of QSAR results, Chemometric methods in molecular design, Weinheim 1995.
[18] P. Zhou, H. Mei, F. Tian, J. Wang, S. Wu, Z. Li, A new two-dimensional approach to quantitative prediction for collision cross-section of more than 110 singly protonated peptides by a novel moecular electronegativity-interaction vector through quantitative structure-spectrometry relationship studies, Front. Chem. China, 2 (2007) 55−63.
[19] M. Randic, Resolution of ambiguities in structure-property studies by use of orthogonal descriptors, J. Chem. Inf. Comput. Sci. 31 (1991) 311−320.
[20] M. Zakariazadeh, A. Barzegar, S. Soltani, H. Aryapour, Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity, Med. Chem. Res. 24 (2015) 2485−2504.
[21] A. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, O. Igglessi-Markopoulou, G. Kollias, A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs, Mol. Diversity 14 (2010) 225−235.
[22] J. Gasteiger, J. Zupan, Neural networks in chemistry, Angew. Chem. Int. Ed. Engl. 32 (1993) 503-527.
[23] D. W. Salt, N. Yildiz, D. J. Livingstone, C. J. Tinsley, The use of artificial neural networks in QSAR, Pestic. Sci. 36 (1992) 161−170.
[24] T. Aoyama, Y. Suzuki, H. Ichikawa, Neural networks applied to pharmaceutical problems. III. Neural networks applied to quantitative structure-activity relationship (QSAR) analysis, J. Med. Chem. 33 (1990) 2583−2590.
[25] W. Guo, P. Zhu, H. Brodowsky, The study for optimization of chromatographic condition by means of artificial neural networks, Talanta 44 (1997) 1995−2001.
[26] W. Guo, Y. Lu, X.M. Zheng, The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN, Talanta 51 (2000) 479−488.