1. D. Achlioptas, T. Gouleakis and F. lliopoulos, Local computation algorithms for the lová sz local lemma, arXiv:1809.07910 (2018).
2. A. Banerjee and A. Char, On the spectrum of directed uniform and non-uniform hypergraphs, arXiv:1710.06367 (2017).
3. A. Banerjee, A. Char and B. Mondal, Spectra of general hypergraphs, Linear Algebra Appl. 518 (2017) 14−30.
4. C. Bu, Y. Fan and J. Zhou, Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs, Front. Math. China, 11 (2015) 1−10.
5. C. Bu, J. Zhou and Y. Wei, E-cospectral hypergraphs and some hypergraphs determined by their spectra, Linear Algebra Appl. 459 (2014) 397−403.
6. S. R. Bulo and M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, International Conference on Learning and Intelligent Optimization, Springer−Verlag, Berlin, (2009) 45−58.
7. Z. Chen and L. Qi, Circulant tensors with applications to spectral hypergraph theory and stochastic process, JIMO 12 (2016) 1227−1247.
8. K. C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6 (2008) 507−520.
9. J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268−3292.
10.J. Cooper and A. Dutle, Computing hypermatrix spectra with the Poisson product formula, Linear Multilinear Algebra 63 (2015) 956−970.
11.R. Cui, W. Li and M. Ng, Primitive tensors and directed hypergraphs, Linear Algebra Appl. 471 (2015) 96−108.
12.Y. Fan, Y. Tan, X. Peng and A. Liu, Maximizing spectral radii of uniform hypergraphs with few edges, Discuss. Math. Graph Theory 36 (2016) 845−856.
13.S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extension, Linear Algebra Appl. 438 (2013) 738−749.
14.D. Ghoshdastidar and A. Dukkipati, Consistency of spectral partitioning of uniform hypergraphs under planted partition model, Adv. Neural Inf. Process. Sys. (2014) 397−405.
15.D. Ghoshdastidar and A. Dukkipati, A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning, Proceedings of the 32nd International Conference on Machine Learning, Lille, France (2015) 400−409.
16.S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim. 24 (2012) 564−579.
17.S. Hu and L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math. 169 (2014) 140−151.
18.S. Hu and L. Qi, The Laplacian of a uniform hypergraph, J. Comb. Optim. 29 (2015) 331−366.
19.S. Hu, L. Qi and J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl. 439 (2013) 2980−2998.
20.S. Hu, L. Qi and J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph, Linear Algebra Appl. 469 (2015) 1−27.
21.L. Kang, V. Nikiforov and X. Yuan, The p-spectral radius of k-partite and k-chromatic uniform hypergraphs, Linear Algebra Appl. 478 (2015) 81−107.
22.M. Khan and Y. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, Linear Algebra Appl. 480 (2015) 93−106.
23.M. Khan, Y. Fan and Y. Tan, The H-spectra of a class of generalized power hypergraphs, Discrete Math. 339 (2016) 1682−1689.
24.L. Liu and L. Lu, The (p,q)-spectral radii of (r,s)-directed hypergraphs, arXiv:1804.08808 (2018).
25.G. Li, L. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl. 20 (2013) 1001−1029.
26.H. Li, J. Shao and L. Qi, The extremal spectral radii of k-uniform supertrees, J. Comb. Optim. 32 (2016) 741−764.
27.Li. Wei, J. Cooper and A. Chang, Analytic connectivity of k-uniform hypergraphs, Linear Multilinear Algebra 65 (2017) 1247−1259.
28.L. H. Lim, Singular values and eigenvalues of tensors: a variational approach. In: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, IEEE, (2005) 129−132.
29.V. Nikiforov, Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455−535.
30.V. Nikiforov, Some extremal problems for hereditary properties of graphs, Electro. J. Comb. 21 (2014) 1−17.
31.K. Pearson, Spectral hypergraph theory of the adjacency hypermatrix and matroids, Linear Algebra Appl. 465 (2015) 176−187.
32.K. Pearson and T. Zhang, Eigenvalues on the adjacency tensor of products of hypergraphs, Int. J. Contemp. Math. Sci. 8 (2013) 151−158.
33.K. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin. 30 (2014) 1233−1248.
34.K. Pearson, T. Zhang, The Laplacian tensor of a multi-hypergraph, Discrete Math. 338 (2015) 972−982.
35.L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302−1324.
36.L. Qi, H^+-Eigenvalues of Laplacian and signless Lapaclian tensors, Commun. Math. Sci. 12 (2014) 1045−1064.
37.L. Qi, J. Shao and Q. Wang, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl. 443 (2014) 215−227.
38.J. Y. Shao, A general product of tensors with applications, Linear Algebra Appl. 439 (2013) 2350−2366.
39.J. Shao, L. Qi and S. Hu, Some new trace formulas of tensors with applications in spectral hypergraph theory, Linear Multilinear Algebra 63 (2015) 971−992.
40.J. Shao, H. Shan and B. Wu, Some spectral properties and characterizations of connected oddbipartite uniform hypergraphs, Linear Multilinear Algebra 63 (2015) 2359−2372.
41.J. Xie and A. Chang, H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Front. Math. China 8 (2013) 107−128.
42.J. Xie and A. Chang, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra Appl. 430 (2013) 2195−2204.
43.J. Xie and A. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl. 20 (2013) 1030−1045.
44.J. Xie and L. Qi, The clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphs, Int. J. Numer. Anal. Model. 12 (2015) 318−327.
45.J. Xie and L. Qi, Spectral directed hypergraph theory via tensors, Linear Multilinear Algebra 64 (2016) 780−794.
46.C. Yu, C. Tai, T. Chan and Y. Yang, Modeling multi-way relation with hypergraph embedding, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, (2018) 1707−1710.
47.X. Yuan, L. Qi and J. Shao, The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs, Linear Algebra Appl. 490 (2016) 18−30.
48.X. Yuan, J. Shao and H. Shan, Ordering of some uniform supertrees with larger spectral radii, Linear Algebra Appl. 495 (2016) 206−222.
49.J. Zhang and J. Li, The maximum spectral radius of k-uniform hypergraphs with r pendent vertices, Linear Multilinear Algebra 67 (2018) 1062−1073.
50.W. Zhang, L. Liu, L. Kang and Y. Bai, Some properties of the spectral radius for general hypergraphs, Linear Algebra Appl. 513 (2017) 103−119.
51.X. Yuan, M. Zhang and M. Lu, Some upper bounds on the eigenvalues of uniform hypergraphs, Linear Algebra Appl. 484 (2015) 540−549.
52.J. Yue, L. Zhang and M. Lu, The largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths, Front. Math. China 11 (2016) 1−23.
53.J. Zhou, L. Sun, W. Wang and C. Bu, Some spectral properties of uniform hypergraphs, Electron. J. Comb. 21 (2014) 4−24.