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Rhombellanes are mathematical structures existing in various 
environments, in crystal or quasicrystal networks, or even in their 
homeomorphs, further possible becoming real molecules. 
Rhombellanes originate in the K2.3 complete bipartite graph, a tile 
found in the linear polymeric staffanes. In close analogy, a rod-like 
polymer derived from hexahydroxy-cyclohexane, HHCH, was 
imagined. Further, the idea of linear polymer synthesized from 
dehydro-adamantane, DHAda, was extended in the design of a three-
dimensional crystal network, called here Ada-Ada, of which tile is a 
hyper-adamantane (an adamantane of which vertices are just 
adamantanes). It was suggested that Ada-Ada would be synthesized 
starting from the real molecule tetrabromo-adamantane, by 
dehydrogenation and polymerization. The crystal structures herein 
proposed were characterized by connectivity and ring sequences and 
also by the Omega polynomial. 
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1. INTRODUCTION  

The Rhombellanes are structures with all strong rings being rhombs/squares (Figure 1, 
left); they have been proposed by Diudea in 2017 [1]. Rombellanes are structurally related 
to [1,1,1]propellane, an organic molecule, first synthesized in 1982 [2]; by IUPAC rules 
[3], it is named tricyclo[1.1.1.01,3]pentane, a hydrocarbon with formula C5H6, containing 
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only triangles; its reduced form, C5H8, eventually named bicyclo[1.1.1]pentane, has only 
rhomb/square rings; it can be represented as K2,3 - the complete bipartite graph (Figure 1, 
right). [1,1,1]Propellane undergoes spontaneous polymerization, to bicyclo[1.1.1]pentyl 
oligo- and polymers (degree of polymerization up to 100), called [n]staffanes [4,5]; they 
are rigid, linear structures (Figure 2, left), molecular rods that exhibit restricted rotation 
along the rod axis. 

A rhombellane was defined by Diudea [6-8] as a structure having: 

a) All strong rings are rhombs/squares;  
b) Vertex classes consist of all non-connected vertices;  
c) Omega polynomial has a single term: 1x|E|;  
d) Line graph of the parent graph has a Hamiltonian circuit;  
e) It contains at least one K2.3 subgraph.  

 

   
Cube-rhombellane.22 ADA-rbl(C).14 K2.3.5 = Rh2(3×1).5 

 
Figure 1. Rhombellane basic structures. 

 
Construction of the cube-rhombellane (Figure 1, left) is illustrated in Figure 1. Each 

square face forms a K2.3 motif (Figure 1, middle and right) by joining the opposite corners 
with homeomorphic diagonals; these diagonals are joint together in an adamantane motif 
(Figure 1, middle, the red contour); K2.3 and adamantane are both “tiles”, not polyhedra. 

Rhombellanes are, in general, designed by the “rhombellation” operation; it starts 
with diagonalizing each face of an all-rhomb map Rh0 by a joint point (a “rbl”- vertex); 
then, new vertices are added opposite to the parent vertices and join each of them with the 
rbl-vertices lying in the proximity of each parent vertex, thus local Rh-cells being formed. 
The process can continue, considering the envelope Rhn as “Rh0” for Rhn+1, in this way 
shell by shell being added to the precedent structure. Since the two diagonals of a rhomb 
may be topologically different, each generation may consist of two isomers. 

The cube-rhombellane.22 (Figure 1, left) has the vertex connectivity 6 and 3, 
respectively. To synthesize it as a molecule, one may start from 1,2,3,4,5,6-Hexahydroxy-
cyclohexane HHCH, to provide the connectivity 6; connectivity 3 is more accessible [9,10]. 
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By analogy to [1.1.1]propellane and staffanes [n]stf [5], a linear rod-like polymer 
[n]HHCH (a poly-ether) was designed by Diudea (Figure 2, middle and right). 

 

   
[3]Stf(4) [2]Stf(6) [3]HHCH(6) 

 

 
Figure 2. Rhombellane-related linear polymeris structures (in square brackets is the number 

of building blocks; in round brackets is the connectivity of bridge-points). 
 

This analogy was also exploited in the synthesis of linear (“zig-zag”) polymer of 
which building block is 1,3-dehydro-adamantane (Figure 3, left - named here [3]DHAda, 
with the staffane system). Adamantane Ada molecule was discovered by Landa (a Czech 
chemist) in 1933 in petrol [11]; then a series of syntheses of Ada and its derivatives have 
been proposed [5,12-14]. Dehydro-adamantane DHAda (Figure 3, middle) is obtained by 
eliminating the two bromine atoms from 1,3-dibromo-adamantane (Figure 3, right). 

 

   
[3]DHAda oligomer Dehydro-Ada (DHAda) Dibromo-Ada 

 
Figure 3. Adamantane derivatives. 

 

2. RESULTS  

According to Steinhardt [15], crystals are highly ordered structures, with atomic clusters 
repeated periodically, in three independent directions of the space, and showing an 
essentially discrete diffraction diagram; there are only 14 ways to build the crystal 
structures, namely the Bravais lattices; they are completely described by the 230 symmetry 
groups of the space. 
 
2.1. ADA−ADA CRYSTAL NETWORK 

A hypothetical tetra-dehydro-adamantane TDAda molecule, obtainable by eliminating the 
four bromine atoms in tetraboromo-adamantane, is conceivable to undergo a 3D-
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polymerization, to provide a triple-periodic crystal network, eventually named Ada-Ada, as 
Diudea designed.  

The 3D Ada-Ada net has the building block, i.e. tile [16], a hyper-adamantane (the 
structure of adamantane (i.e. tricyclo[3.3.1.13.7]decane, by IUPAC nomenclature [3]) in 
which all atoms are changed by Ada), named here Ada-Ada.100 (Figure 4, left). It has a 
tetrahedral symmetry, as the basic adamantane; Ada-Ada and its void (Figure 4, right) can 
be perfectly filled by the Dia net, as in Ada-Dia.129 (Figure 5, left); the missing part of Dia 
net (space group Fd-3m), Dia.29 (Figure 5, middle), consists of four Ada units sharing a 
common (central) point (in blue, Figure 5, middle). Thus, the Ada-Ada net is a kind of Dia 
net, with defects, namely Dia.29, repeated at a distance of about 0.7.1 nm (from a central 
point to the other), as shown in Figure 6. The Filled-Void (Ada-Ada).71 (Figure 5, right) is 
a tetrahedral tile, with faces having six Ada-units (each shared by two faces), the core of 
four Ada and the corners by four Ada, a total of twenty Ada units. Ada-Dia.129 filled tile 
(Figure 5, left) has additional ten Ada, a total of 30 Ada units. 

 

 

   
Ada-Ada.100 Ada-Ada.100 (projection) Void(Ada-Ada).42 

 
Figure 4. Ada-Ada unit and its void. 

   
Ada-Dia.129 

(Ada=30) 
Dia.29 

(Ada=4) 
Filled-void(Ada-Ada).71       
(Ada=20=(4×6)/2+4+4) 

 
Figure 5. Ada-Ada unit and its void ( filled by Dia net; Ada=no. adamantane units). 
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Ada-Dia embedding Dia.29 defects in Dia net Ada-Ada net (empty of Dia.29) 
 

Figure 6. Ada−Ada / Dia net embedding. 
 

Any crystal net has its co-net, the complementary net; of course, the two nets are 
one and the same, only the building blocks, can be distinctly designed (see Figure 4, left 
and right). Translating Ada-Ada.100 (Figure 4, left) along the orthogonal coordinates, 
results in the Ada-Ada net (Figure 6, right); from this structure, one may cut-off the 
corresponding Ada-Ada co-net (ortho, Figure 7, left); the translation failed in case of the 
complementary tile, the void(Ada-Ada).42 (Figure 4, right), however, it was successful if 
translated this void by inclined (60o) coordinates [17] (Figure 7, middle and right). 

   
Ada-Ada co-net (ortho) Ada-Ada co-net (inclined) Void-42_inclined (60o) 

 

 

Figure 7. Ada−Ada co-net. 
 

The Ada-Ada binodal net (and its co-net) is characterized by the vertex connectivity 
(LC) and vertex ring surrounding (LR) sequences, as shown in Table 1; LC is the layer 
matrix of connectivity [18-20] while LR is the corresponding matrix of rings around each 
vertex in the graph [21]. The characterization of crystal networks by rings, was used in 
crystallographic characterization as the vertex symbol vs; however, only in the Topo Group 
Cluj papers a sequence of all rings surrounding (coming from the layer matrix of rings, of 
which entries are the sum of all rings around, of the choice length) was described [7, 22]. 

 

2.2. OMEGA POLYNOMIAL CHARACTERIZATION OF [3]HHCH(6) AND ADA−ADA   
        NETWORKS 

 
Omega polynomial Ω(x) is defined on the ground of opposite edge strips ops in the graph 
[23-25] Denoting by m, the number of ops of length s=|S|, one can write: Ω(x) = Ʃs msxs. Its 
first derivative (in x = 1) can be taken as a graph invariant or a topological index: Ω’ (1) = 
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Ʃs sms = |E(G)|. The CI (Cluj-Ilmenau) index [26] is calculated from Ω(x) (in x = 1) as: CI = 
Ω’2-( Ω’+ Ω’’). 

 
 

Table 1. Ada-Ada binodal net characterization: connectivity (LC) and atom ring 
surrounding (LR). 

 
Tile: Ada-Ada.100; (deg=4(40); deg=2(60); R6=40; R8=30; R18=4) 

Atom type LC LR 
deg=4; vs. 63.83.186 4. 6. 9. 15. 18. 27. 45. 54. 75. 105 12. 30. 54. 90. 108. 162. 270. 324. 486. 738. 756  
deg=2; vs. 62.82.182 2. 6. 8. 9. 18. 24. 30. 54. 70. 74 6. 24. 48. 60. 102. 144. 180. 324. 432. 528. 780  

 
There are graphs with single ops, which is a Hamiltonian circuit. For such graphs, 

Omega polynomial has a single term: Ω(x) = 1x s; s = |E(G)|; it is the case of rhombellanes, 
as defined in the introductory part of this paper. 

For the rod-like network [n]HHCH, the Omega polynomial and CI-index are as 
follows 

6 6( 1)( ) 6 nx x nx x      ;  2108( 1) 36( 1) 30CI n n      
In case of Ada-Ada 3D-network, the Omega polynomial is more complicate: 

2
1
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i n n n n n n

i
x x x x


   



      

The above results were obtained by numerical analysis of series of structures with 
increasing number of building blocks. 
 

Table 2. Omega polynomial in [n]HHCH and Ada-Ada polymers (examples). 
 

n HHCH Ada-Ada 
Polynomial CI Polynomial 

1 6x 1+1x 6+1x 12 390 4x 3+1x 120 
2 6x 1+2x 6+1x 18 894 8 x 5+4x 10+1x 648 
3 6x 1+3x 6+ x 24 1614 8 x 7+8x 14+4x 21+1x 1872 
4 6x 1+4x 6+1x 30 2550 8 x 9+8x 18+8x 27+4x 36+1x 4080 
5 6x 1+5x 6+1x 36 3702 8 x 11+8x 22+8x 33+8x 44+4x 55+1x 7560 

 
Structures and data were performed by the Nano-Studio software program [27] 

developed at Topo Group Cluj. 
 
3. CONCLUSION 

Rhombellanes are mathematical structures existing in various environments, in crystal or 
quasicrystal networks, or even in their homeomorphs, the lasts providing a plethora of 
molecular graphs, finally candidates to the status of real molecules [see also 28−30]. 
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Rhombellanes originate in the K2.3 complete bipartite graph, found as a motif in 
the linear polymeric staffanes. In close analogy, and using the cube-rhombellane structure, 
the rod-like (yet hypothetical) polymer [n]HHCH was designed, with vertices of 
connectivity 6 coming from the hexahydroxy-cyclohexane, HHCH. Further, the idea of 
linear polymer synthesized from dehydro-adamantane, DHAda, was extended in the design 
of a three-dimensional crystal network, called here Ada-Ada, of which tile/building block is 
a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was 
suggested that Ada-Ada would be synthesized starting from the real molecule tetrabromo-
adamantane, by dehydrogenation and polymerization. The crystal structures herein 
proposed were characterized by connectivity and ring sequences and also by the Omega 
polynomial, also used in defining the rhombellane structure. It is strongly believed that 
Mathematical Chemistry can approach to the real needs of Chemistry by studies as that 
herein presented. 
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