Let $G$ be a graph and let $m_{i,j}(G)$, $i,j\ge 1$, be the number of edges $uv$ of $G$ such that $\{d_v(G), d_u(G)\} = \{i,j\}$. The $M$-polynomial of $G$ is $M(G;x,y) = \sum_{i\le j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices of degrees $2$ and $3$ is given that involves only invariants related to the degree $2$ vertices and the number of faces. The approach is applied on several families of chemical graphs. In one of these families an error from the literature is corrected.
A. Ali, S. Elumalai and T. Mansour, On the symmetric division deg index of molecular graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 205–220.
A. Ali, W. Nazeer, M. Munir and S. M. Kang, -polynomials and topological indices of zigzag and rhombic benzenoid systems, Open Chem. 16 (2018) 73–78.
B. Basavanagoud, A. P. Barangi and P. Jakkannavar, -polynomial of some graph operations and cycle related graphs, Iranian J. Math. Chem.10 (2019) 127–150.
H. Deng, S. Chen and J. Zhang, The PI index of phenylenes, J. Math. Chem.41 (2007) 63–69.
E. Deutsch and S. Klavžar, -polynomial and degree-based topological indices, Iranian J. Math. Chem.6 (2015) 93–102.
E. Deutsch and S. Klavžar, -polynomial revisited: Bethe cacti and an extension of Gutman’s approach, J. Appl. Math. Comput.60 (2019) 253–264.
B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comp.219 (2013) 8973–8978.
P. Gayathri and U. Priyanka, Degree based topological indices of linear phenylene, Int. J. Innovative Res. Sci. Eng. Tech. 6 (2017) 16986–16997.
I. Gutman and J. Djurdjević, Fluoranthene and its congeners − a graph theoretical study, MATCH Commun. Math. Comput. Chem. 60 (2008) 659–670.
S. He, H. Chen and H. Deng, The vertex-degree-based topological indices of fluoranthene-type benzenoid systems, MATCH Commun. Math. Comput. Chem.78 (2017) 431–458.
F. Li, Q. Ye and J. Rada, The augmented Zagreb indices of fluoranthene-type benzenoid systems, Bull. Malays. Math. Sci. Soc.42 (2019) 1119–1141.
S. M. Kang, W. Nazeer, W. Gao, D. Afzal and S. N. Gillani, -polynomials and topological indices of dominating David derived networks, Open Chem.16 (2018) 201–213.
Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique and S. M. Kang, -polynomials and topological indices of V-Phenylenic nanotubes and nanotori, Sci. Reports7 (2017) Art. 8756.
M. Munir, W. Nazeer, S. Rafique and S. M. Kang, -polynomial and related topological indices of nanostar dendrimers, Symmetry8 (2016) Art. 97.
Y. Pan and J. Li, Graphs that minimizing symmetric division deg index, MATCH Commun. Math. Comput. Chem.82 (2019) 43–55.
J. Rada and S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem. 81 (2019) 315–323.
M. Rezaei, W. Gao, M. K. Siddiqui and M. R. Farahani, Computing hyper Zagreb index and -polynomials of titania nanotubes , Sigma J. Eng. Nat. Sci.35 (2017) 707–714.
N. Tratnik, Formula for calculating the Wiener polarity index with applications to benzenoid graphs and phenylenes, J. Math. Chem.57 (2019) 370–383.
H. Yang, A. Q. Baig, W. Khalid, M. R. Farahani and X.J. Zhang, -polynomial and topological indices of benzene ring embedded in P-type surface network, J. Chem (2019) Article Number 7297253.
Y. Yao, M. Liu, K. C. Das and Y. Ye, Some extremal results for vertex-degree-based invariants, MATCH Commun. Math. Comput. Chem. 81 (2019) 325–344.
P. Žigert Pleteršek, The edge-Wiener index and the edge-hyper-Wiener index of phenylenes, Discrete Appl. Math. 255 (2019) 326–333.
Deutsch, E., & Klavžar, S. (2020). On the M-polynomial of Planar Chemical Graphs. Iranian Journal of Mathematical Chemistry, 11(2), 65-71. doi: 10.22052/ijmc.2020.224280.1492
MLA
Emeric Deutsch; Sandi Klavžar. "On the M-polynomial of Planar Chemical Graphs", Iranian Journal of Mathematical Chemistry, 11, 2, 2020, 65-71. doi: 10.22052/ijmc.2020.224280.1492
HARVARD
Deutsch, E., Klavžar, S. (2020). 'On the M-polynomial of Planar Chemical Graphs', Iranian Journal of Mathematical Chemistry, 11(2), pp. 65-71. doi: 10.22052/ijmc.2020.224280.1492
VANCOUVER
Deutsch, E., Klavžar, S. On the M-polynomial of Planar Chemical Graphs. Iranian Journal of Mathematical Chemistry, 2020; 11(2): 65-71. doi: 10.22052/ijmc.2020.224280.1492