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ABSTRACT Reliability Wiener number is a modification of the original Wiener number in 
which probabilities are assigned to edges yielding a natural model in which there are some (or 
all) bonds in the molecule that are not static. Various probabilities naturally allow modelling 
different types of chemical bonds because chemical bonds are of different types and it is well-
known that under certain conditions the bonds can break with certain probability. This is fully 
taken into account in quantum chemistry. In the model considered here, probabilistic nature is 
taken into account and at the same time the conceptual simplicity of the discrete graph 
theoretical model is preserved. Here we extend previous studies by deriving a formula for the 
reliability Wiener number of a Cartesian product of graphs 퐺□퐻. 
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1. INTRODUCTION 

Distance is a basic yet very important notion in many applications of graph theory 
including mathematical chemistry [2, 3]. The sum of all distances, in mathematical 
chemistry well known as the Wiener number of a graph [15], is also studied in mathematics 
[9] and in computer science [8]. Wiener number is the first topological index used in 
chemical graph theory. Until today, a remarkably large number of modifications and 
extensions of the Wiener number was put forward (see for example the special issues and 
books [4, 5]). However, there are relatively few studies of a seemingly natural extension of 
Wiener number where the meaning of the edge weights are probabilities. The name for the 
invariant studied here is reliability Wiener number because this generalization of Wiener 
number was first applied in the context of interconnection networks [12]. We believe that it 
may be also of interest in chemical graph theory, because the idea to assign probabilities to 
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edges is a natural model taking into account that in the structure observed there are some 
(or all) edges (bonds) that are not static [13]. Various probabilities naturally allow 
modelling different types of chemical bonds. Namely, chemical bonds are of different types 
and it is well-known that under certain conditions the bonds can break with certain 
probability. This is fully taken into account in quantum chemistry. However, a model that 
would take into account the probabilistic nature and at the same time keep the conceptual 
simplicity of the discrete graph theoretical model may be a fruitful avenue of research. It 
was shown in [13] that reliability Wiener number can be used as a measure of branching 
[10, 11]. 

Another motivating example is the benzen ring where there are double bonds which 
form a perfect matching in the complete graph on 6 vertices. There are 10 possible perfect 
matchings among 6 vertices. Usually, only two matchings that are most probably based on 
the fixed embedding of the ring into the space are considered (so called Kekulé structures). 
However it also makes sense to take into account the extended pairings (Dewar, Claus and 
others) for a given connectivity as was done for example in [1]. Therefore, it may be natural 
to give certain probabilities to the matchings and thus to double bonds. For example, the 
two Kekulé structures may naturally be assumed to have probability 1/2 each, but there are 
other possibilities of course. 

Cartesian product of graphs is one of the standard graph products [6]. Well known 
structures that can be regarded as graph products are meshes and tori that can be obtained 
as products of paths and cycles, respectively. Wiener number of Cartesian product was 
studied in [16, 7, 14]. In this paper we show how the reliability Wiener number of a 
Cartesian product can be computed when knowing the reliability Wiener numbers of 
factors. In the next section, basic definitions are given. In Section 3, a definition of 
Cartesian product of edge weighted graph is given and a basic lemma is proved. The main 
theorem is proved in Section 4. 

 
2. DEFINITIONS 

A weighted graph 퐺 = (푉, 퐸, 푝) is a combinatorial object consisting of an arbitrary set 
푉 = 푉(퐺) of vertices, a set 퐸 = 퐸(퐺) of unordered pairs {푢, 푣} = 푢푣 = 푒 of distinct 
vertices of 퐺 called  edges, and a  weighting function, 푝 = 푝 . The weight function 
푝: 퐸(퐺) ↦ [0,1] is interpreted as the probability of edges. That is, 1 − 푝(푒) is the 
probability that edge 푒 ∈ 퐸(퐺) breaks. Hence it is natural to assume that 푝(푒) > 0 for any 
edge of the graph (bond). Alternatively, we can consider the complete graph and model non 
existing edges by setting 푝(푒) = 0. As usual, the order and size of 퐺 are denoted by 
푛 = |푉(퐺)| and 푚 = |퐸(퐺)|. 
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Here, 퐺 ≅ 퐻 denotes graph isomorphism, i.e. the existence of a bijection 푏: 푉(퐺) →
푉(퐻) such that (1) 푔 , 푔  are connected in 퐺 exactly if 푏(푔 ), 푏(푔 ) are connected in 퐻 
and (2) 푝 (푔 , 푔 ) = 푝 (푏(푔 ), 푏(푔 )). 

A path 푃 between 푢 and 푣 is a sequence of distinct vertices 
푢 = 푣 , 푣 , 푣 , … , 푣 , 푣 = 푣 such that each pair 푣 푣 , (푙 = 푖, … , 푘 − 1) is connected 
by an edge. 

We can define the reliability of a path 푃 with 
 

푝(푃) =  푝(푣 , 푣 ). 

 
In the special case when all edges have probability 1, 푝(푃) = 1for any path 푃. 

Of course, several paths from one vertex to another can exist. The maximum 
reliability between two vertices is reached using the path with maximum reliability. In [12], 
the notion of  reliability of a graph was introduced by a version of Wiener number where 
instead of the usual distance the most reliable path between each pair of vertices is 
considered. Following this idea, we defined in [13] the reliability Wiener number as 
follows. For two vertices 푢, 푣 ∈ 푉(퐺) denote with 푃 ⃗ the set of all directed paths from 푢 
to 푣. The weight of the most reliable path from 푢 to 푣 is called the reliability of (푢, 푣):  

퐹 ⃗ = max
∈ ⃗

{푝(푃) }.    (1) 
 
Furthermore, we set 퐹 ⃗ = 1 for all 푢 ∈ 푉(퐺) and define  
 

             푅 (푢) = ∑  ∈ ( ) 퐹 ⃗  the weighted out-reliability of vertex 푢, 
             푅 (푢) = ∑  ∈ ( ) 퐹 ⃗  the weighted in-reliability of vertex 푢, 
          푊 (퐺) = ∑  ∈ ( ) 푅 (푢) the out-reliability Wiener number of 퐺, 
           푊 (퐺) = ∑  ∈ ( ) 푅 (푢) the in-reliability Wiener number of 퐺. 

 
As undirected graphs are studied here, obviously, because 푝(푢, 푣) = 푝(푣, 푢) =

푝(푒) for any edge 푒 = {푢, 푣} in 퐺, 푅 (푢) = 푅 (푢) =: 푅(푢) and 푊 (퐺) = 푊 (퐺), so 
we can define the reliability Wiener number by 

 

푊 (퐺, 푝) = ∑  ∈ ( ) 푅(푢) = ∑  ∈ ( ) ∑  ∈ ( ) 퐹 ⃗ = ∑  퐹 ⃗. (2) 
 

The reliability Wiener number of 퐺 is a measure of the capacity of the vertices of 퐺 
of transmitting information in a reliable form, where the information is transmitted through 
the most reliable path. As suggested in [12], the problem of finding 퐹 ⃗ can be solved by 
using Dijkstra’s algorithm on a weighted digraph 퐺′ = (푉, 퐸, −ln푝). Hence 푊  can be 
computed efficiently. 
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3. THE CARTESIAN PRODUCT OF GRAPHS 

First, we generalize the definition of Cartesian product to (edge) weighted Cartesian 
product of weighted graphs. 
 
Definition 1 The Cartesian product of weighted graphs 퐺 and 퐻 is a weighted graph, 
denoted as 퐺□퐻, whose vertex set is 푉(퐺□퐻) = 푉(퐺) × 푉(퐻). Two vertices 푢 = (푎, 푥) 
and 푣 = (푏, 푦) of 퐺□퐻 are adjacent if 푎 = 푏  푎푛푑  푥푦 ∈ 퐸(퐻) or 푥 = 푦  푎푛푑  푎푏 ∈ 퐸(퐺). 
The probabilities (weighting function 푝) on edges (푢, 푣) = (푎, 푥)(푏, 푦) of a graph 퐺□퐻 are  
 

 푝(푢, 푣) = 푝((푎, 푥)(푏, 푦)) = 푝(푥푦); 푖푓푎 = 푏푎푛푑푥푦 ∈ 퐸(퐻),
푝(푎푏); 푖푓푥 = 푦푎푛푑푎푏 ∈ 퐸(퐺).

� 

 
Remark. Following the definition of reliability of (1), in the case of undirected Cartesian 
product of graphs, we will omit arrows and write 퐹( , )( , ). 

 
Lemma 2  For any two weighted graphs 퐺 and 퐻, the reliability of the pair ((푎, 푥), (푏, 푦)), 
퐹( , )( , ), is the product of reliabilities of the projections:  
 

 퐹( , )( , ) = 퐹( , )( , ) ⋅ 퐹( , )( , ).    (3) 
 
Proof. Let 푃 be arbitrary most reliable path from 푎 to 푏 in 퐺: 푎 = 푎 , 푎 , 푎 , … , 푎 = 푏 
with the reliability 푝(푃) = 푝 ⋅ 푝 ⋯ 푝 = 퐹 . Let 푄 be arbitrary most reliable path from 
푥 to 푦 in 퐻: 푥 = 푥 , 푥 , 푥 , … , 푥 = 푦 with the reliability 푝(푄) = 푞 ⋅ 푞 ⋯ 푞 = 퐹 . 
This gives rise to two paths in 퐺□퐻:  

 
 푃 × {푥} = (푎 , 푥)(푎 , 푥)(푎 , 푥) ⋯ (푎 , 푥) 

 

 {푏} × 푄 = (푏, 푥 )(푏, 푥 )(푏, 푥 ) ⋯ (푏, 푥 ) 
 

with the reliabilities 퐹( , )( , ) = 푝(푃) and 퐹( , )( , ) = 푝(푄), respectively. Here we use the 
obvious fact that 퐹( , )( , ) in 퐺□퐻 is just a copy of 퐹  in 퐺. The concatenation of these 
paths is a path from (푎, 푥) to (푏, 푦) with reliability 퐹( , )( , ) ⋅ 퐹( , )( , ). Hence, 
maximizing over all paths from (푎, 푥) to (푏, 푦),  

 퐹( , )( , ) ≥ 퐹( , )( , ) ⋅ 퐹( , )( , ). 
 
Conversely, let 푃 be a path from (푎, 푥) and (푏, 푦) in 퐺□퐻, with maximum reliability. Thus,  

 푃:    (푎, 푥) = (푎 , 푥 )(푎 , 푥 )(푎 , 푥 ) ⋯ (푎 , 푥 ) = (푏, 푦) 
and  

 퐹( , )( , ) = 푝(푃) = 푝 ⋅ 푝 ⋯ 푝 . 
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Using the projections 훱퐺: 퐺□퐻 → 퐺,  훱퐺(푎, 푥) = 푎and  훱퐻: 퐺□퐻 → 퐻,  훱퐻(푎, 푥) = 푥 on a 
path 푃 (for more details see [6]) we find two walks in 퐺 and 퐻, respectively:  
 

 Π 푃 :  푎 = 푎 , 푎 , 푎 , … 푎 = 푏   a walk in 퐺 between 푎 and 푏, 
 Π 푃 :  푥 = 푥 , 푥 , 푥 , … 푥 = 푦   a walk in 퐻 between 푥 and 푦. 

 
From the definition of the product 퐺□퐻 it is clear that Π (푎 푥 ) = Π (푎 푥 ) if and 
only if Π (푎 푥 ) ≠ Π (푎 푥 ), 푖 = 0,1, … 푁 − 1. Denote by 푁 (푃) the set of indices 푖 
of vertex-pairs Π (푎 푥 ), Π (푎 푥 ) for which Π (푎 푥 ) ≠ Π (푎 푥 ), and 
similarly, 푁 (푃). Obviously, 푁 (푃) and 푁 (푃) are disjoint sets,  
 

 |푁 (푃)| + |푁 (푃)| = 푁 
and  

  

푝(Π (푃)) =  
∈ ( )

푝 ,            푝(Π (푃)) =  
∈ ( )

푝 . 

Thus,  
 퐹( , )( , ) = 푝(푃) = 푝(Π (푃)) ⋅ 푝(Π (푃)) ≤ 퐹 ⋅ 퐹 . 
 

 In the last inequality we use the facts that any walk gives rise to a path with 
reliability that cannot be smaller, and that no path can have greater reliability than most 
reliable path. Hence reliabilities of projections of 푃 can be bounded from above by 퐹  and 
퐹 . This completes the proof.  □ 
 
4. MAIN RESULT 

Theorem 3 For any two graphs 퐺 and 퐻, 
 

푊 (퐺□퐻) = |퐺| ⋅ 푊 (퐻) + |퐻| ⋅ 푊 (퐺) + 2푊 (퐺) ⋅ 푊 (퐻).  (4) 
 
Proof. We will divide the sum in the definition (2) of reliability Wiener number for 
푉(퐺□퐻) into three parts: the sum over all pairs where 푎 = 푏, the sum over all pairs where 
푥 = 푦 and the sum over all pairs where 푎 ≠ 푏 and 푥 ≠ 푦.  

  

      푊 (퐺□퐻) = ∑  ( , ),( , )∈ ( □ ) 퐹( , )( , ) 

                                     = ∑  ( , ),( , )∈ ( □ ), 퐹( , )( , ) 

                                      + ∑  ( , ),( , )∈ ( □ ), 퐹( , )( , ) 

                                      + ∑  ( , ),( , )∈ ( □ ), , 퐹( , )( , ). 
 

The first term, using Lemma 2, contributes  
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1
2  

( , ),( , )∈ ( □ ),

퐹( , )( , ) =
1
2  

( , )( , )∈ ( □ ),

퐹( , )( , ) ⋅ 퐹( , )( , ) 

  

                     = |퐺| ⋅
1
2

 
, ∈ ( ),

퐹  

  
    = |퐺| ⋅ 푊 (퐻). 

 
Analogously, second term gives  
  

1
2  

( , ),( , )∈ ( □ ),

퐹( , )( , ) = |퐻| ⋅ 푊 (퐺). 

 
In the inner part of the last sum we can use  
 

 ∑  푎∈푉(퐺) ∑  푏∈푉(퐺),푏≠푎 퐹(푎,푥)(푎,푦) ⋅ 퐹(푎,푦)(푏,푦) = ∑  푎∈푉(퐺) 퐹(푎,푥)(푎,푦) ⋅ ∑  푏∈푉(퐺),푏≠푎 퐹푎푏  
                                                                 = ∑  ∈ ( ) 퐹( , )( , ) ⋅ 푅(푎) 
                                             = 퐹 ∑  ∈ ( ) 푅(푎) 
                                                            = 2퐹 푊 (퐺), 

 

where 푅(푎) is the weighted in/out reliability of vertex 푎, defined in (1). Thus,  
  

1
2  

( , ),( , )∈ ( □ ), ,

퐹( , )( , ) =
1
2  

∈ ( )

 
∈ ( ),

 
∈ ( )

 
∈ ( ),

퐹( , )( , ) 

  

                                           =
1
2  

∈ ( )

 
∈ ( ),

2퐹 푊 (퐺)  

  

                                                       = 푊 (퐺) ⋅  
∈ ( )

푅(푥) = 2푊 (퐺) ⋅ 푊 (퐻). 

 
Summing up contributions of the three parts completes the proof.    □ 
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