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ABSTRACT The total irregularity of a simple graph 퐺 is defined as 
푖푟푟 (퐺) = ∑ |푑 − 푑 |, ∈ ( ) , where 푑   denotes the degree of a vertex 푢 ∈ 푉(퐺). In this 
paper by using the Gini index, we obtain the ordering of the total irregularity index for some 
classes of connected graphs, with the same number of vertices. 
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1. INTRODUCTION 

Throughout this paper, we consider simple graphs (finite undirected graphs without loops 
and multiple edges). For 푢 ∈ 푉(퐺), 푑  denotes the degree of 푢 in 퐺. An edge of 퐺 
connecting the vertices 푢 and 푣 is denoted by 푢푣. A graph 퐺 is regular if all of its vertices 
have the same degree, otherwise it is irregular. Up to now, several parameters have been 
proposed to characterize the regularity of a graph. 
 For example in [1], Albertson defined the imbalance of an edge푒 = 푢푣 ∈ 퐸(퐺) as 
푒푚푏(푒) = |푑 − 푑 | and the irregularity of 퐺 as 푖푟푟(퐺) = ∑ 푒푚푏(푒)∈ ( ) . More results 
on the imbalance and the irregularity of a graph 퐺 can be found in [1,2,10]. Recently, in [3] 
a new measure of irregularity of a simple undirected graph, so-called the total irregularity, 
was defined as 푖푟푟 (퐺) = ∑ |푑 − 푑 |, ∈ ( ) . These irregularity measures as well as other 

attempts to measure the irregularity of a graph were studied in several works [4,810]. 
Dimitrov and Skrekovski [6] derived relation between 푖푟푟(퐺) and 푖푟푟 (퐺) for a connected 
graph 퐺 with 푛 vertices. Abdo et al. [3], obtained the upper bound of the total irregularity 
among all graphs with 푛 vertices, and they showed that the star graph 푆  is the tree with the 
maximal total irregularity among all trees with 푛 vertices. 
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 You  et al. [13] investigated the total irregularity of unicyclic graphs and determined 
the graph with the maximal total irregularity  among all unicyclic graphs on 푛 vertices. In 
[14], the authors introduced two transformations to study the total irregularity of bicyclic 
graphs and characterized the graph with the maximal total irregularity among all bicyclic 
graphs on 푛 vertices. Zhu et al. [15] introduced an important transformation and 
investigated the minimal total irregularity of graphs, and they characterized the graph with 
the minimal, the second minimal, the third minimal total irregularity among trees, unicyclic 
or bicyclic graphs on 푛 vertices. 
 The theory of majorization as a powerful tool has widely been applied to the related 
research areas of pure and the applied mathematics [12]. Recently some issues related to 
the structural properties of graphs have been explored solving suitable optimization 
problems via majorization technique see [7, 11]. 
 In this paper, we use this theory to study the total irregularity of some classes of 
simple graphs. It let us to determine the five graphs with the first through fifth greatest total 
irregularity index among the class of trees of order 푛. We extend the previous results about 
the graph with the maximal, second maximal, third maximal irregularity among bicyclic 
graphs on 푛 vertices. Also we do a similar work for unicyclic graphs on 푛 vertices. 

 
2. PRELIMINARY RESULTS 

We begin by introducing the main mathematical theory explored the theory of majorization. 
Let 푥 ≥ 푥 ≥ ⋯ ≥ 푥  and 푦 ≥ 푦 ≥ ⋯ ≥ 푦 , be two  non-increasing sequences of real 
numbers. If they satisfy the conditions ∑ 푥 ≤ ∑ 푦 , for 1 ≤ 푘 ≤ 푛 − 1 and ∑ 푥 =
∑ 푦 , then we say that 푥 = (푥 , 푥 , ⋯ , 푥 )  is majorized by 푦 = (푦 , 푦 , … , 푦 ) and write 
푥 ≼ y. Furthermore, by 푥 ≺ y we mean that 푥 ≼ y and 푥 ≠ 푦. A real-value function 
휑 defined on a set 퐴 ⊆ R  is said to be Schur-convex on 퐴 if 푥 = (푥 , 푥 , … , 푥 ), 푦 =
(푦 , 푦 , … , 푦 )  and   푥 ≼ y  then  휑(푥) ≤ 휑(푦). If, in addition, 휑(푥) < 휑(푦) where  푥 ≺ y, 
then 휑 is said to be strictly Schur-convex on 퐴. 
 The Gini coefficient (also known as the Gini index or Gini ratio) is a measure of 
statistical dispersion intended to represent the income distribution of a nation's residents. 
For 푥 = (푥 , 푥 , … , 푥 ), the Gini index can be written as Φ (푥) =

̅
∑ ∑ |푥 − 푥 |, 

where 푥̅ = (푥 + 푥 + ⋯ + 푥 )/푛  [12].  
 Dalton in 1920 proved the following result: 
 

Lemma 1. The Gini index is an strictly Schur-convex function. 

Proof. See [5,12]. 
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 The Lemma 1 leads us to the following important corollary: 

 

Corollary 2. Let 퐺 and 퐻 be two connected graphs with degree sequences 푥 =
(푥 , 푥 , … , 푥 ) and 푦 = (푦 , 푦 , … , 푦 ), respectively such that |퐸(퐺)| = |퐸(퐻)|. If 푥 ≼ y, 
then 푖푟푟 (퐺) ≤ 푖푟푟 (퐻). The equality holds if and only if 푥 = 푦. 
 

Proof. Let  |퐸(퐺) = |퐸(퐻)| = 푚. Then  푥̅ = 푦 = . Therefore  

Φ (푥) =
̅
∑ ∑ |푥 − 푥 | = ∑ |푑 − 푑 |, ∈ ( )  = (2푖푟푟 (퐺)) = ( ). 

Similarly, Φ (푦) = ( ). Since 푥 ≼ y , by Lemma 1 Φ (푥) is an strictly Schur-convex 
function and so Φ (푥) ≤ Φ (푦). Hence 푖푟푟 (퐺) ≤ 푖푟푟 (퐻)  and the equality holds if and 
only if 푥 = 푦. 
 

3. MAIN RESULTS 

Let 풯 , 풰  and 픙  be the set of trees of order 푛, the set of connected unicyclicgraphs of 
order 푛, and the set of connected bicyclic graphs of  order 푛, respectively. Also for a graph 
퐺, denoted by ∆(퐺) the maximum degree of  퐺. 
 Let 푃  and 푆  be the path and star on 푛 vertices, respectively. In [3] the authors 
showed that the star graph 푆   is the tree with the maximal totalirregularity among all trees 
with 푛 vertices. It has been shown that [15] the path 푃   has minimal total irregularity 
among all trees with 푛 vertices. Here we prove this result by a different and very short 
method. 
 
Theorem 3. Let 푇 ∈ 풯 \{푃 , 푆 } be a tree with 푛 vertices. Then 

2푛 − 4 = 푖푟푟 (푃 ) < 푖푟푟 (푇) < 푖푟푟 (푆 ) = (푛 − 1)(푛 − 2). 
 
Proof. Note that each two trees with 푛 vertices have the same number of edges equal 
to 푛 − 1. Since the degree sequence (2, … , 2,1,1), belongs to 푃 , is minimal in the class 
풯  (i.e., in the order ≼) and the degree sequence (푛 − 1,1, … , 1), belongs to 푆 , is maximal 
in the class 풯 , we obtain the result by  of Corollary 2.  
 
 Now we extend Theorem 3 by majorization. Let 푇 = 푆 , 푇 , ⋯ , 푇   be the trees on 
푛 vertices as shown in Figure 1.  In the following theorem, we show that the graph 푇  has 
the second maximal, the graph 푇  has the third maximal, the graphs 푇 , 푇  and 푇  have the 
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fourth maximal and the graphs 푇 , 푇 , 푇  and 푇  have the fifth maximal total irregularity 
among all trees. 
 
Theorem 4. Let 푇 ∈ 풯 \{푇 , 푇 , … , 푇 , 푇 } and 푛 ≥ 13. Then  
푖푟푟 (푇 ) > 푖푟푟 (푇 ) > 푖푟푟 (푇 ) > 푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푖푟푟 (푇 ) > 푖푟푟 (푇 ) = 푖푟푟 (푇 ) 
= 푖푟푟 (푇 ) = 푖푟푟 (푇 ) > 푖푟푟 (푇). 

 

 
Figure 1. The trees 푇 , … , 푇 . This figure is taken from [11]. 

 
Proof. By an elementary computation, we have 푖푟푟 (푇 ) = (푛 − 1)(푛 − 2), 푖푟푟 (푇 ) =
푛 − 3푛, 푖푟푟 (푇 ) = 푛 − 3푛 − 2, 푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푛 − 3푛 − 4, 
푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푖푟푟 (푇 ) = 푛 − 3푛 − 6 and 푖푟푟 (푇 ) = 푖푟푟 (푇 ) =
푖푟푟 (푇 ) = 푛 − 3푛 − 10. 
 So we only need to show that if 푇 ∈ 풯 \{푇 , 푇 , … , 푇 }, then 푖푟푟 (푇 ) > 푖푟푟 (푇). 
Clearly, 푇  is the unique tree with ∆ = 푛 − 1, 푇  is the unique tree with ∆ = 푛 −
2, 푇 ,  푇 , 푇  are the all trees with ∆= 푛 − 3 and 푇 , … , 푇  are the all trees with ∆ = 푛 − 4. 
Since푇 ∈ 풯 \{푇 , 푇 , … , 푇 }, then  ∆(푇) ≤ 푛 − 5. Let 푎 = (푑 , 푑 , … , 푑 ) be the degree 
sequence of  푇. Since the degree sequence of 푇  is 푏 = (푛 − 5,5,1, … ,1), it is easy to see 
that 푎 ≺ 푏, because 푇  is the unique  tree with 푏 as its degree sequence. Thus, 푖푟푟 (푇 ) >
푖푟푟 (푇) follows from Corollary 1. 
 Let 푈 ,  푈 , … , 푈  be the unicyclic graphs as shown in Figure 2. In [13], the authors 
investigated the total irregularity of unicyclic graphs and determined the graph with the 
maximal total irregularity 푛 − 푛 − 6 among unicyclic graphs on 푛 vertices. Here we  
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determine the four unicyclic graphs with the first through fourth greatest total irregularity 
index among the class of  unicyclic graphs of order 푛. 
 

 
Figure 2. The unicyclic graphs  푈 , … , 푇 . This figure is taken from [11]. 
 
Theorem 5. Let  퐺 ∈ 풰 \{푈 , 푈 , … , 푈 }  and   푛 ≥ 13. Then  

푖푟푟 (푈 ) > 푖푟푟 (푈 ) > 푖푟푟 (푈 ) > 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) ≥ 푖푟푟 (퐺). 
 
Proof. By an elementary computation, we have푖푟푟 (푈 ) = 푛 − 푛 − 6,  푖푟푟 (푈 ) = 푛 −
푛 − 8, 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푛 − 푛 − 12, 푖푟푟 (푈 ) = 푛 − 푛 − 10, 
푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푛 − 푛 − 14 and 
푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푖푟푟 (푈 ) = 푛 − 푛 − 20. So we only need to prove 
that if  퐺 ∈ 풰 \{푈 , 푈 , … , 푈 }, then 푖푟푟 (푈 ) > 푖푟푟 (퐺). 
 It is easy to check that 푈  is the unique unicyclic graph with ∆ = 푛 − 1, 푈 , 푈 , 푈  
are all unicyclic graphs with ∆ = 푛 − 2, and 푈 ,  푈 , … , 푈  are  all unicyclic graphs with 
∆ = 푛 − 3. If 퐺 ∈ 풰 \{푈 , 푈 , … , 푈 }, then ∆(퐺) ≤ 푛 − 4. Suppose that degree sequence 
of 퐺 is 푎 = (푑 , 푑 , … , 푑 ). Since 퐺 ∈ 풰 , then 퐺 has only exactly one cycle. This implies 
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that 푛 − 4 ≥ 푑 ≥ 푑 ≥ 푑 ≥ 2. If 푏 = (푛 − 4,5,2,1, … ,1) then 푎≼푏. Since each unicyclic 
graph with 푛 vertices has 푛 edges, by Corollary 2, we can conclude that 

푖푟푟 (퐺) ≤ n − 9 + n − 6 + (n − 5)(n − 3) + 3 + 4(n − 3) + n − 3 = n − n − 12 
= irr (U ). 

This completes the proof. 
 
Corollary 6. Let 푛 ≥ 6 be a positive integer and let 퐺 be a unicyclic graph on 푛 vertices. 
Then, 푖푟푟 (퐺) ≤ 푛 − 푛 − 6 and the equality holds if and only if 퐺 ≅ 푈 . 
 
 Let 퐵 , 퐵 , … , 퐵  be the bicyclic graphs as shown in Figure 3. In [14], the authors 
characterized the graph with the maximal total irregularity among all bicyclic graphs on 푛 
vertices. The next result extends this result by determining the first up to third  greatest total 
irregularity together with the corresponding bicyclic graphs among the class of connected 
bicyclic graphs of order 푛. 
 
Theorem 7. Let 퐺 ∈ 픙 \{퐵 , 퐵 , … , 퐵 } and 푛 ≥ 12. Then  

푖푟푟 (퐵 ) > 푖푟푟 (퐵 ) > 푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) ≥ 푖푟푟 (퐺). 
 

 
Figure 3. The bicyclic graphs  퐵 , … , 퐵 . This figure is taken from [11]. 

 
Proof. By an elementary computation, we have 푖푟푟 (퐵 ) = 푛 + 푛 − 16, 푖푟푟 (퐵 ) = 푛 +
푛 − 22, 푖푟푟 (퐵 ) = 푛 + 푛 − 18, 푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) = 푛 + 푛 − 20, 
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푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) = 푛 + 푛 − 24 and 푖푟푟 (퐵 ) = 푖푟푟 (퐵 ) =
푛 + 푛 − 32. So we only need to prove that if 퐺 ∈ 픙 \{퐵 , 퐵 , … , 퐵 }, then  푖푟푟 (퐺) ≤
푖푟푟 (퐵 ).  
 It is easy to check that 퐵 , 퐵  are all bicyclic graphs with ∆ = 푛 − 1, 퐵 , … , 퐵  are  
all bicyclic graphs with  ∆ = 푛 − 2.  If  퐺 ∈ 픙 \{퐵 , 퐵 , … , 퐵 }, then ∆(퐺) ≤ 푛 − 3. 
Suppose that the degree sequence of 퐺 is 푎 = (푑 , 푑 , … , 푑 ). Since 퐺 ∈ 픙 ,  

푛 − 3 ≥ 푑 ≥ 푑 ≥ 푑 ≥ 푑 ≥ 2. 
Let 푏 = (푛 − 3,5,2,2,1, … ,1). Then 푎≼푏 and by Corollary 2, we can conclude that: 

푖푟푟 (퐺) ≤ 푛 − 8 + 푛 − 5 + 푛 − 5 + (푛 − 4) + 3 + 3 + 4(푛 − 4) + 푛 − 4 + 푛 − 4
= 푛 + 푛 − 20 = 푖푟푟 (퐵 ). 

This completes the proof. 
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