
Iranian J. Math. Chem. 10 (3) September (2019) 269– 278 

 

 

Topological Efficiency of Some Product Graphs 
 

KANNAN PATTABIRAMAN AND THOLKAPPIAN SUGANYA 
 
Department of Mathematics, Annamalai University, Annamalainagar 608 002, India 
 

ARTICLE INFO  ABSTRACT 
Article History: 
Received: 15 April 2017 
Accepted: 12 September 2017 
Published online:30 September 2019 
Academic Editor: Ali Reza Ashrafi 

The topological efficiency index of  a connected graph G , denoted 
by ( )Gρ  is defined as [2 ( )/ | ( ) | ( )]ρ W G V G w G , where ( )w G = 
min{ ( ) ( )}:vw v VG G  and ( )W G  is the Wiener index of .G  In this 
paper, we obtain the value of topological efficiency index ρ for 
some composite graphs such as tensor product, strong product, 
symmetric difference and disjunction of two connected graphs. 
Further, we have obtained the topological efficiency index for a 
double graph of a given graph. 
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1. INTRODUCTION  

Throughout this paper, we consider only simple connected graphs. We use the notation 
( )Gd v to denote the degree of a vertex v in a graph .G  Let ( , )Gd u v  denote the distance 

between two vertices u and v in G and let ( )vw G  denote the sum of all distances from v to 
all other vertices in G , that is,  

( ) vw G  ( ) ( , )Gu V G d u v  with ( ) { ( :min ) vG Gww v ( )}V G . 

The complete graph on n vertices is denoted by Kn. 
The topological indices (also known as the molecular descriptors) have been received 

much attention by various authors in the past decades, and they have been found to be 
useful in the structure activity relationships (SAR), structure-property relationships (SPR), 
and pharmaceutical drug design in organic chemistry, see [4, 5, 15]. Indeed, the topological 
index of a graph G  can be viewed as a graph invariant under the isomorphism of graphs, 
that is, for any topological index TI ,  )( ()TI TIG H  if G H . 
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One of the most thoroughly studied topological indices was the Wiener index which 
was proposed by Wiener in 1947 [17]. This index has been shown to possess close relation 
with the graph distance, which is an important concept in pure graph theory. It is also well 
correlated with many physical and chemical properties of a variety of classes of chemical 
compounds. For more details, see[9, 10, 11, 12, 18]. The Wiener index of a graph G , 
denoted by ( )W G , is defined as , ( ) ( , )) / 2( Gu v V G d vW G u , where the summation goes 

over all pairs of vertices in G . One can easily observe that ( ) ( ) / 2( ) vv V G GW wG  . 

Vukičević et al. [16] proposed a new graph descriptor ρ, called topological efficiency 
index based on minimal vertex contribution w defined for a connected graph G  as  

2 ( )( ) .
| ( ) | ( )

ρ W GG
V G w G

  

The topological efficiency index of 66C  fullerene graph was computed in [16]. In [3], 
the topological efficiency of some product graphs such as Cartesian product, join, corona 
product, composition and hierarchical product were given. The value of topological 
efficiency index of some types of fullerenes and nanocones are obtained in [7, 8]. In this 
paper, we obtain the topological efficiency index for some composite graphs such as tensor 
product, strong product, symmetric difference and disjunction of two connected graphs. 
Further, we have obtained topological efficiency index for a double graph. 
 
2. BOUNDS FOR TOPOLOGICAL EFFICIENCY INDEX 

In this section, we obtain the bounds for ρ of the given graph G . The minimum and 
maximum degrees of G are denoted by ( )Gδ  and ( )G , respectively. The complement of G

denoted by G is a simple graph on the same set of vertices of G in which two vertices u and 
v are adjacent in G if and only if they are nonadjacent in G . 
 
Theorem 2.1. For any graph G  with n  vertices and m  edges 

2(( 1) ) 2 ( )( ) .
( ) 2 ( 1) ( )

n n m W GG
nw G n n n G
 

 
  

ρ  

 
Proof. For a vertex v in G , there are ( )Gd v  vertices which are at distance 1 from v and the 
remaining ( )1 Gn d v   vertices are at distance at least 2. Therefore 

( ) ( )  2(  1 ( )   2) ( ( 1) ).      v G G Gw G d v n d v n d v  
By the definition of ( )W G , 

 
( ) ( )

1 1( ) ( ) (2( 1) ( )
2 2

1 .v G
v V G v V G

W G w G n d v n n m
 

       
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Hence 

  2 ( ) 2(( 2) )
( ) ( )

W G n n m
nw G n

G
w G





ρ . 

By definition of ( )w G , we get 
( ) min{ ( :) ( )}

2( 1) ( ).
vw v Vw G G G

n G

  


 

Hence 
2 ( ) 2 ( )( )

( ) 2 ( 1) ( )
W G W GG

nw G n n n G
 

  
ρ .                                           ■ 

 
By Using Theorem 2.1 for the graph G , we obtain the following corollary. 

 
Corollary 2.2. Let G be a graph with n  vertices and m  edges and let G  be its 
complement. Then 

( 1) 2( )
( )

n n mG
nw G
 

ρ . 

 
3. TENSOR PRODUCT 

For two graphs 1G and 2G , the tensor product denoted by 1 2G G , has vertex set 

1 2( ) ( )V G V G  in which 1 1( , )g h and 2 2( , )g h are adjacent whenever 1 2g g  is an edge in 1G
and 1 2h h  is an edge in 2G . Note that if 1G  and 2G  are connected graphs, then 1 2G G  is 
connected only if at least one of them is non-bipartite, see [6]. The tensor product of graph 
has extensively been studied in relation to the areas such as graph colorings, graph 
recognition, decompositions of graphs and design theory [1, 2, 6]. 
 
Theorem 3.1. Let G  be a connected graph and let λ be the number of edges not in a 
triangle ofG . Then 

( ) ( ) 2 .( ) ( 1)rG K rw G G rδ λ    
Proof. Let 1 2( ) , . , }. .{ , nV G u u u  and 1 2( ) , ,{ ..., }r rV K v v v . The notation denotes the vertex 
( , )i ju v  in rG K . First we compute the sum of the distances between a fixed vertex ijx  to 

all other vertices in rG K . From the structure of rG K , we have following three cases. 

Case 1. The distance between ijx  and ikx  is 2. Thus, 1
1 ( , ) 2( 1).

r

r
G K ij ikk d x x r
    
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Case 2. One can observe that, , ,( ) ( )
rG K ij kj G i kd x x d u u   if ( ).i k Eu Gu   Define 

1 { ( ) :E e E G  e is in a triangle of G} and 2 { ( ) :E e E G  e is not in a triangle of G}. 
If ( )i ke u E Gu  , then  

1

2

2 if ,
( )

3 if .
,G Kr ij kj

i k

i k

e u u E
e u u

d x x
E

 
   

 

Hence, 

1 2

1 2

( , ), 1, ( ) ( )

( )

( )

( , ) ( , )

( , ) ( , )

( , )

2 3 ( , ).

r ij kj r ri k i k

r ri k i k

ri k

i k i k i k

n
G K X X G K ij kj G K ij kji k i k u u E G u u E G

G K ij kj G K ij kju u E u u E

G K ij kju u E G

G i kju u E u u E u u E G

d d X X d X X

d X X d X X

d X X

d u u

     

  



  

 

 



  

  
 

  

 

For an edge 1 2,i ku u E E  , , 1( )G i kd u u  , we have 

1 2

1 2

2

( , ), 1,

( )

( )

(1 ( , )) (2 ( , ))

( , )

(1) (2) ( )

(1) (1) ( )

.( ) ( )

r ij kj i k i k

i k

ii k i k

ii k i k

i

n
G K X X G i k G i ki k i k u u E u u E

G i ku u E G

uu u E u u E

uu u E G u u E

G uj

d d u u d u u

d u u

w G

d

w G

w Gu λ

   



 

 

   



 

  



  

  

 
 

 

Case 3. The distance between ijx  to klx  is ,( )G i kd u u . Thus 

, 1, , 1, , 1,( , ) ( 1) ( , ) ( 1) ( ).
r i

n r n
G K ij kl G i k ui k i k j l j l i k i kd x x r d u u r w G          

 Combining the above three cases, we obtain  
2 1)  1)

2  1)

( ) ( ( ) ( ) ( ( )

( ) ( .) (
i iij

i

u u

u

x r G i

G i

w G K r d u r

r d u r

w G w G

w G

λ

λ

       

    
 

From the definition of w (G), we obtain 

 ( { ( ) ( ) ( 1)} ( ) ( 1)) min   2 2 ,λ λ
ir u G iG K r d u r Gw w G r w G r         

where δ(G) is the minimum degree of the graph G and λ is the number of edges not in a 
triangle of G.                                                                                                                           ■ 
 

Recall from [13] that the Wiener index of the tensor product of G and rK  is given by 

the formula 2( ) ( ) ( 1) ( )rW G K r W G m r nr r λ        , where n, m and λ are the numbers 
of vertices, edges and edges not in triangle in G, respectively. Using Theorem 3.1 and 

( )rW G K , we obtain the ρ value for tensor product of G and rK . 
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Theorem 3.2. Let G be a graph with m edges. If λ is a number of edges not lie on a triangle 
in G, then 

2( ( ) ( ) ( 1))( .
( ( ) ( ) 2( 1))

)r
rW G m r n r

rw G
G

G
K

n r
λρ

δ
   


 




 

 

4. STRONG PRODUCT 

The strong product of two graphs 1G  and 2G  denoted by 1 2G G , is the graph with vertex 
set V(G1)×V(G2) = {(u, v): uV(G1), v V(G1)} and (u, x)(v,y) is an edge whenever (i) 
u v and xyE(G2), or (ii) uvE(G1) and x= y, or (iii) uvE(G1) and xyE(G2). 
 
Theorem 4.1. Let G be a connected graph. Then )( 1.) (rG K r Gw r     
 
Proof. Let 1 2( ) , . , }. .{ , nV G u u u  and 1 2( ) , ,{ ..., }r rV K v v v . The notation denotes the vertex
( ),i ju v  in ( )  rW G K . 

Case 1. From the structure of ( )  rW G K , the distance between ijx  and ilx  equals 1. 
Thus, 

1
1 ( , ) 1.

r

r
G K ij ill d x x r
    

Case 2. The distance between ijx  and kjx  equals ,( )G i kd u u . Then 

, 1, ( )( , ) ( , ) ( ).
r ik

n
G K ij kj G i k ui k i k u V Gd x x d u u w G      

Case 3. The distance between ijx  to klx  equals ,( )G i kd u u . Thus 

, 1, , 1, , 1,( , ) ( 1) ( , ) ( 1) ( ).
r i

n r n
G K ij kl G i k ui k i k j l j l i k i kd x x r d u u r w G            

Combining the above cases, we obtain 
( ) ( ) ( ( ) ( )1) 1.  1

ij i i ix u ur uw w G w G wr rG r GK r          

By the definition of w (G), we have 
( ) min{ ( )} ( )  1.1

ir uw wG K r G G rrwr                                  ■ 

 
Recall from [14] that the Wiener index of the strong product of G and Kr is given by 

the formula of 2( ) ( ) 1 /  ( ) 2rW GK w nG r r   , where n is the numbers of vertices of G. 
Using Theorem 4.1 and ( )  rW G K , we obtain the ρ value for strong product of G and Kr. 
 
Theorem 4.2. Let G be a graph on n vertices. Then 
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2[ ( ) ( 1) / 2]( ) .
[ ( ) 1]

 r
rw G n rG
n rw r

K
G

ρ  





  
 

5. SYMMETRIC DIFFERENCE 

For a given graph 1G  and 2G , their symmetric difference 1 2 G G  is the graph with the 
vertex set V(G1)×V(G2) and the edge set  

1 2 1( ) {( )( ) |  , , (  )E G G u x v y uv E G    or 2( )xy E G but not both}. 
The following lemma follows easily from the structure of 1 2 G G . 
 
Lemma 5.1. Let 1G and 2G be two connected graphs with 1n and 2n vertices respectively. 
Then 

(i) 1 2 1 2| ( ) | | ( ) | | ( ) |V G G V G V G   . 
(ii) The distance between two vertices (u, x) and (v,y) of 1 2 G G is given by 

1 2

1 21 ( ) ( )
(( ) ( )), ,

2
,G G u x v y

G G
d

uv E or xy E but not both ,
otherwise.

 
 


 

(iii) The degree of a vertex (u, x) in 1 2 G G  is  

1 2 1 2 1 22 1( , ) ( ) ( ) ( ) ( )2 .G G G G G Gd u x d u d x d un dn x    

  
Theorem 5.2. Let 1G and 2G be two connected graphs with n1 and n2 vertices. Then 

(i) 1 2 1 2 2 1 1 2 1 2( ) ( ) ( ) ( ) (2 )2 2 .G G n n n G n G Gw Gδ δ  δ δ       

(ii) 2 2
1 2 1 2 1 2 1 2 2 1 1 21) (( ) ( ) 4W G G n n n n m n m n m m     , where δ(G1) and δ(G2) are 

      the minimum degree of G1 and G2, respectively. 
 
Proof: (i) For any vertex (u, x) in 1 2 G G , there are 

1 2
( , )G Gd u x  vertices which are at 

distance 1 from (u, x) and the remaining 
1 21 2 1| ,( ) | ( )G GV G G d u x    vertices are at 

distance 2, therefore by Lemma 5.1, we obtain 
, 1 2 2 1

1 2 2 1

1

( )

2 2 1

(   ( ) ( ) 2( )( ) (1)

                        1 ( ) ( ) 2( )( ) (2)
                        

) ( )

( ( )
 2 2 – ( ) ( ) 2( )( ).

)
u xw G G n u n x u x

n n n u n x u x
n n n u n x u x

  

    
   



 

By the definition of w (G), we have 

1 2 1 2 2 1

1 2 2 21 1 1 2

(   min 2  2  –      2  
                  2  2

) { ( ) ( ) ( )( )}
( –    2  .) ( ) ( ) ( )δ δ δ δ

W G G n n n n
n n n G n

u x u x
G G G

   
 


 

 

(ii) By case (i), and the definition of Wiener index, we have 
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1 2 ( , ) 1 2( ) ( )1 2

2 2
1 2 1 2 1 2 2 1 1 2

1) ( )
2

( ( ) .

(  

1) 4 

 

    

   u xu V G x V GW G G

n

w G

n n n m n m n m m

G

                                    ■

 

 
Using Theorem 5.2, we obtain the ρ value for symmetric difference of 1G  and 2G . 

Theorem 5.3. Let iG be a graph with in  vertices and im  edges, 1,2i  . Then 
2 2

1 2 1 2 1 2 2 1 1 2

1 2 1 2 2
1

1 1 2 1 2
2

2( ( ) ( ) )( )
(2 2 ( ) ( ) 2 ( ) ( ))

 G G
G G G G

n n n n -1 m n m n 4m m
n n n n n δ δ

ρ
n δ δ

  


 
  

. 

 
6. DISJUNCTION 

The disjunction of the graphs 1G  and 2G , denoted by 1 2G G , has the vertex set 

1 2( ) ( )V G V G  and edge set E( 1 2G G ) = {(u, x)(v, y) | uvE(G1) (or) xyE(G2)}. The 
following lemma is easily follows from the structure of 1 2G G . 
 
Lemma 6.1. Let 1G  and 2G  be two connected graphs with n1 and n2 vertices respectively. 
Then 

(i) 2 21 1| ( ) | ( ) || ( || )V G G V G V G  . 
(ii) The distance between two vertices (u,x) and (v,y) of 1 2G G is given by 

1 2

1 21 ( ) or ( ) ,
( ( ) 

2 otherwis
  ( , ),   , )  

e.G G
G G

d u
uv E

x
xy E

v y 
 




 

(iii) The degree of a vertex ( , )u x  in 1 2G G  is 

1 2 1 2 1 212(( , )) ( ) ( ) ( ) ( ).G G G G G Gd u x d u n d u d u d xnν     

Theorem 6.2. For two graphs 1G  and 2G , we have 
(i) 11 2 2 1 21 2 2 1( ) ( )2 2 –  ( ) ( ( ).)w G GG G n n n Gn G    δ δ δ δ  

(ii) 2 2
1 2 1 2 1 2 1 2 2 1 1 2( 1) ( ) ) 2( .W G G n n n n m n m n m m       

 
Proof. (i) For any vertex ( , )u x  in 1 2G G , there are 

1 2
( , )G Gd u x  vertices which are at 

distance 1 and the remaining 
1 21 2 1| ( ) | ( , )G GV u xG dG     vertices are at distance 2. By 

Lemma 6.1, and the definition of ( ), 1 2( )u xw G G  we obtain 

, 1 2 2 1 1 2 2( ) 1

1 2 2 1

( ) ( ) ( )( ) (1) 1 ( ) ( ) 2( ) (2)
                          2 2 – ( ) (

( ) ( ) ( )
) 2( )( ).

u xw G G n u n x u x n n n u n x u
n n n u n x u x

       

   
 

By the definition of ( )w G , we have 
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1 2 1 2 2 1

1 1 2 11 22 2

min 2 2 – –  
                

( ) { ( ) ( ) ( )(
  2

)}
( ) ( ) ( ) ( )2 –  .δ δ δ δ

G G n n n n
n n

w u x u x
G G Gn n G

   
   

 

(ii) By case (i), and the definition of Wiener index, we have 

1 2( ) ( )1 2 1 2

2 2
1 2 1 2 1 2 2 1 1 2

( 1) ( )
2

( ( .1) ) 2

  

  



 

 u V G x V GW G G G G

n n n n m n m n m

w

m
 

■ 
 
Using Theorem 6.2, we have the following theorem. 

  
Theorem 6.3. Let iG  be a graph with in  vertices and im  edges, 1,2i  . Then 

2 2
1 2

1
1 2 2 1 1 2

1 2 1 2 2
2

1 1 2 1 2

2( ( ) ( )( )
(2 2 ( ) ( ) ( ) ( ))G G

G G
G G

1 2n n n n 1 m n m n 2m m
n n n n n δ n δ δ δ

ρ    
   

  . 

 
7. DOUBLE GRAPH 

Let us denote the double graph of a graph G  by *G , which is constructed from two copies 
of G  in the following manner. Let the vertex set of G  be 1 2{ ,( )= , .., }. nV v v vG  and the 

vertices of *G  are given by two sets 1 2{ ,, ... }, nX x x x  and 1 2{ ,, ... }, nY y y y . Thus for 

each vertex ( )iv V G , there are two vertices ix  and iy in *( )V G . The double graph *G  
includes the initial edge set of each copies of G , and for any edge ( )i jv v E G , two more 

edges i jx y  and j ix y  are added. 

 
Lemma 7.1. Let G  be a connected graphs with n  vertices. Then the distance between two 
vertices of *G are given as follows, 

(i) *( ) 2||V G n and *( ) 4|| E G n . 
(ii) * , , , , 1,2,...,( ) ( ) { }G i j G i jd x x d x x i j n  . 

(iii) * , , , , 1,2,...,( ) ( ) { }G i j G i jd x y d x y i j n  .  

(vi) * , 2, 1,2,... }( ) ,{G i id x y i n  . 
 
Theorem 7.2. Let G  be a connected graph with n  vertices. Then 

(i) *( ) 2  ( ) 2w wG G  , 

(ii) *( ) ( )2 .W G W G n  
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Proof. (i) Using Lemma 7.1, we compute the sum of distances between a fixed vertex ix to 

all other vertices in *.G  
Case 1. From the structure of *G , the sum of distances from a fixed vertex ix  to jx

in G  is *( ) .( ),G i j xid x w Gx   

Case 2. The sum of distances from a fixed vertex ix  to jy  in *G  is * ,( )G i jd x y 

( ).xiw G  

Case 3. The sum of distances from a fixed vertex ix  to iy  in *G  is * ,( ) 2.G i id x y   
Combining the above cases, we have *( ) 2 ( ) 2xi xiw G w G  . From the definition of w( )G , 
we obtain:  

* ( 2 ( ) 2) 2{ }  ( ) 2.xiG min w Gw w G     
 (ii) By Case (i), and the definition of Wiener index, we have 

u ( ) u
*

( )
* 1( ) ( ) (2w( ) 2 ) ( )

2
2 .G GV VW G G G W nw G      

                  ■
 

 
Using Theorem 7.2, we obtain the ρ value for double graph of G . 

 
Theorem 7.3. Let G  be a connected graph with n  vertices. Then 

* 2 ( )( )
2 ( ( ) 1)

W G n
n w

G
G





ρ . 
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