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Let G = (푉,퐸) be a finite and simple graph with 휆 ,휆 ,⋯ ,휆  as its 
eigenvalues. The Estrada index of G is defined as 퐸퐸(퐺) = ∑ 푒 . A 
spiro compound is a chemical compound that presents a twisted structure 
of two or more rings, in which 2 or 3 rings are linked together by one 
common atom. In this paper, we will show that the symmetric and stable 
spiro compounds among all spiro compounds have the minimum Estrada 
index.  
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1. INTRODUCTION  

Let 퐺 = (푉,퐸) be a simple graph ,  where by 푉(퐺) and 퐸(퐺) denote the set of all vertices 
and edges of G, respectively .  Let 퐴(퐺) be the adjacency matrix of 퐺  and 휆 , 휆 , … , 휆  be 
the eigenvalues of 퐴(퐺) .  The Estrada index of 퐺 is defined as   퐸퐸(퐺) = ∑ 푒   [7].  It has 
many applications in various fields such as network science, biochemistry and molecular 
graphs [6, 15, 16] . For the Estrada index of trees and an approximation of this graph 
invariant for cycles and paths, we refer to the papers [4, 10, 18, 8]. In  [11, 12] , the Estrada 
index of the cactus graphs in which every block is a triangle were computed. 
   Suppose 푙 ≥ 0  and 푆 (퐺) = ∑ 휆  is the 푙-th spectral moment of 퐺. It is well-
known that this quantity is equal to the number of closed walks of length 푙 in 퐺  and 
푆 (퐺) = 푛, 푆 (퐺) = 푐,  푆 (퐺) = 2푚, 푆 (퐺) = 6푑,  푆 (퐺) = 2∑ 푑 − 2푚 + 8푞, where 
푛, 푐,푚, 푑, 푞 denote the number of vertices, the number of loops ,  the number of edges ,  the 
number of triangles and the number of quadrangles of 퐺 ,  respectively. Moreover, we use 
the notation 푑 = 푑 (퐺) to denote the degree of a the i-th vertex of G, i.e. 푣  [3]. 
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 Let 퐺 be a connected graph constructed from pairwise disjoint connected graphs 
퐺 ,퐺 , … ,퐺  as follows: Select a vertex of 퐺 , a vertex of 퐺  and identify these two 
vertices and continue this manner inductively. More precisely, suppose that we have 
already constructed a graph from 퐺 ,퐺 , … ,퐺 , where 2 ≤ 푖 ≤ 푑 − 1. Then select a vertex 
in the already constructed graph (which may in particular be one of the selected vertices) 
and a vertex of 퐺 ; and then identify these two vertices. We will briefly say that 퐺 is 
obtained by point attaching from 퐺 ,퐺 , … ,퐺  and that 퐺 s are the primary subgraphs 
of 퐺 [5]. 

A spiro compound is a chemical compound, typically an organic compound, that 
presents a twisted structure of two or more rings, in which 2 or 3 rings are linked together 
by one common atom The simplest spiro compounds are bi-cyclic having just two rings, or 
have a bi-cyclic portion as part of the larger ring system, in either case with the two rings 
connected through the defining single common atom. The one common atom connecting 
the participating rings distinguishes spiro compounds from other bi-cyclic [17]. These 
compounds are classifying into two categories: symmetry and asymmetry. We consider the 
spiro compound with the even bonds in each ring and we will show that the spiro 
compounds with the least activation energy which are stable have the minimum Estrada 
index. For example, one of the smallest is shown in Figure 1. 

 

 
Figure 1. Spiro [3.3] heptane. 

 
The spiro compounds isolated from plant and animal origins have important 

application in medical chemistry. The use of them as intermediates in synthesis, and the 
isolated characterization of new natural are particularly welcomed. Spiro compounds used 
as plasticizers (for example glycerinacetal cyclic ketons) in perfumery, intermediate 
products in the synthesis of epoxy, in producing medicine some spiro compounds are used 
as photochoromic materials. Spiro forms of lactones and oxazines are frequently used as 
leucodyes, frequently displaying chromism reversible change between their colorless and 
color form [14]. Examples of symmetry and asymmetry compounds with 5 quadrangles are 
shown in Figure 2. 
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Tetraspiro[3.0.1.37.15.1.313.04]hexadecane       Tetraspiro[3.1.0.1.39.17.26.14]hexadecane 

 
Tetraspiro[3.0.0.36.0.310.15.24]hexadecane        Tetraspiro[3.0.1.0.38.27.15.24]hexadecane 

 
Figure 2. Asymmetric and symmetric spiro compounds with 5 quadrangles. 

 
 Throughout this paper ,  Γ(푘) is a spiro compound which is symmetric and stable 

(stability occurs when a system is in its lowest energy state [13]) with 푘 quadrangles, see 
Figure 3. We show that only  Γ(푘) is possible to be the graph with minimum Estrada index 
among all spiro compounds with 푘 quadrangles. 
 

 
   

Figure 3. The graph Γ(푘). 

 
 An additional motivation for this fact is the following relation between 퐸퐸(퐺) and 

the spectral moment of 퐺, when 푙 ≥ 0 ,    

퐸퐸(퐺) = ∑ 푒 = ∑ ∑
!

= ∑ ( )
!

. 
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 Theorem 1.1. Let 퐺 be a spiro compound with 푘 quadrangles  and Γ(푘) be the spiro 
compound which is shown in Figure 3. Then 퐸퐸 Γ(푘) < 퐸퐸(퐺). 
 
2. THE MINIMAL ESTRADA INDEX OF SPIRO COMPOUNDS WITH풌 

QUADRANGLES 

         Let 퐺  and 퐺  be two graphs .  If 푆 (퐺 ) ≤ 푆 (퐺 ) holds for all positive integer 푙 ,  then 
 퐸퐸(퐺 ) ≤ 퐸퐸(퐺 ).  Moreover ,  if the strict inequality 푆 (퐺 ) < (퐺 ) holds for at least one 
value 푙 ≥ 0 ,  then 퐸퐸(퐺 ) < 퐸퐸(퐺 ).   Recall that a sequence 푎 , 푎 , … ,푎  of numbers is 
said to be unimodal if for some 0 ≤ 푖 ≤ 푛 we have 푎 ≤ 푎 ≤  ⋯ ≤  푎 ≥  푎 ≥ ⋯ ≥
 푎   and this sequence is called symmetric if 푎 = 푎  for 0 ≤ 푖 ≤ 푛  [2].   Thus a symmetric 
unimodal sequence 푎 ,푎 , … , 푎  has its maximum at the middle term (푛  is even) or middle 
two terms (푛 is odd) .   Let 푆 (3푘, 푖) denote the number of closed walks of length 푙 starting at 
the vertex 푣  , 0 ≤ 푖 ≤ 3, in a given graph .  It is well-known that the quantity (퐴 ) ,  
represents the number of walks of length 푙 from the i-th vertex 푣  to the j-th vertex 푣   [1]. 
 Obviously ,  (퐴 ) , = (퐴 ) ,  for undirected graphs . 

 
Lemma 3.1 in [9] states that: 

             
Lemma 2.1. The map  휑:푉 훤(푘) →  푉 훤(푘) , given by 휑(푣 ) = 푣 ( )  is an 
automorphism, when 0 ≤ 푖 ≤ 푘(푐 − 1) − 푖. 
 

Let 푐 = 4. Then we have: 
 
Lemma 2.2.  The map 휑:푉 훤(푘) →  푉 훤(푘) , given by 휑(푣 ) = 푣  is an 
automorphism, when 0 ≤ 푖 ≤ 3푘. 
 
Proof. The proof is similar to Lemma 3.1 in [9].                                                                   ■ 

 
As an immediate consequence, we have: 

      
Corollarly 2.3.   Let 퐴 be the adjacency matrix of  훤(푘) .  Then (퐴 ) , = (퐴 ) ( ), ( ), where 
0 ≤ 푖, 푗 ≤ 3푘. 
 
  Proof.   This is an immediate consequence from definition of automorphism.                       ■ 
 
Lemma 2.4. [See Lemma 3.3 in [9]]. Let 푡, 푙 be integers, 0 ≤ 푡 ≤ 푐 − 2, 푙 ≥ 푐 − 1 and 
푘 ≥ 2, then  
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푆 (푘(푐 − 1), 푡) ≤ 푆 푘(푐 − 1), 푡 + (푐 − 1) ≤ ⋯ 

                                                                      ≤ 푆 푘(푐 − 1), 푡 +
푘
2 − 1 (푐 − 1)  

                                                                                 ≤ 푆 푘(푐 − 1), 푡 + (푐 − 1) . 

For 푙 ≥ , the strict inequality hold. 
 

In what follows, we consider the case of 푐 = 4. 
 

 Lemma 2.5.  Let 훤(푘) be the spiro compound which is shown in Figure 3 .  Then for any 
integer 푡 with 0 ≤ 3푡 ≤ ,  푙 > 3 and 3푘 ≥ 6 ,   

   

⎩
⎪
⎨

⎪
⎧ 푆 (3푘, 0) ≤ ⋯ ≤ 푆 (3푘, 3푡) ≤ ⋯ ≤ 푆 3푘, − 3 ≤ 푆 3푘, , 푖푓 ≡ 0(푚표푑 3)

푆 (3푘, 0) ≤ ⋯ ≤ 푆 (3푘, 3푡) ≤ ⋯ ≤ 푆 3푘, − 4 ≤ 푆 3푘, − 1 , 푖푓 ≡ 1(푚표푑 3),

푆 (3푘, 0) ≤ ⋯ ≤ 푆 (3푘, 3푡) ≤ ⋯ ≤ 푆 3푘, − 5 ≤ 푆 3푘, − 2 , 푖푓 ≡ 2(푚표푑 3)

 

 and the strict inequalities hold for sufficiently large 푙.  
   

Lemma 2.6.   Let 훤(푘) 푏푒  the spiro compound which is shown in Figure 3 .  Then for any 

integer 푡  with 0 ≤ 3푡 + 1.3푡 + 2 ≤ [ ], 푙 > 3  and 3푘 ≥ 6 ,   

⎩
⎪
⎨

⎪
⎧ 푆 (3푘, 1) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 1) ≤ ⋯ ≤ 푆 3푘,

3푘
2 − 2 ≤ 푆 3푘,

3푘
2 + 1    

3푘
2 ≡ 0(푚표푑 3)

푆 (3푘, 1) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 1) ≤ ⋯ ≤ 푆 3푘,
3푘
2 − 3 ≤ 푆 3푘,

3푘
2             

3푘
2 ≡ 1(푚표푑 3),

푆 (3푘, 1) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 1) ≤ ⋯ ≤ 푆 3푘,
3푘
2 − 4 ≤ 푆 3푘.

3푘
2 − 1     

3푘
2 ≡ 2(푚표푑 3)

 

 and 

⎩
⎪
⎨

⎪
⎧ 푆 (3푘, 2) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 2) ≤ ⋯ ≤ 푆 3푘,

3푘
2 − 4 ≤ 푆 3푘,

3푘
2 − 1       

3푘
2 ≡ 0(푚표푑 3)

푆 (3푘, 2) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 2) ≤ ⋯ ≤ 푆 3푘,
3푘
2 − 2 ≤ 푆 3푘,

3푘
2 + 1        

3푘
2 ≡ 1(푚표푑 3),

푆 (3푘, 2) ≤ ⋯ ≤ 푆 (3푘, 3푡 + 2) ≤ ⋯ ≤ 푆 3푘,
3푘
2 − 3 ≤ 푆 3푘,

3푘
2               

3푘
2 ≡ 2(푚표푑 3)

 

and the strict inequalities hold for 푙 ≥ + 1. 
  

Suppose 퐺  is a spiro compound with 푘 quadrangles different from Γ(푘) . For 푘 < 푘, 
let 푘 ≔ max{푢: 훤(푢) 푖푠 푎 푠푢푏푔푟푎푝ℎ 표푓 퐺 }, 퐵  be the set of all subgraphs which are 
connected with the vertices that their indices are congruent to 0 (mod 3) and Γ(푘 ) has 푏  
quadrangles, 0 ≤ 푖 ≤ 푘 − 푘 . Let 푘 ≔ max{푏 : 0 ≤ 푖 ≤ 푘 − 푘 }, 퐺 be a spiro compound 

with 푘  quadrangles, 훼 ∈ 푉(퐺) and 퐺( , ) be the spiro obtained from 퐺 by attaching 
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two spiros Γ( ) and Γ( ) at 훼. Moreover, we assume that 푀 (퐺 , ;훼) and 

푀 (퐺 + 1. − 1 ;훼) are the set of all (훼.훼)-walks of length 푙 in 퐺 .  and 

퐺 + 1. − 1  starting and ending at the edges or only one edge in 퐺, respectively. 
Similarly,  

푀′ (퐺 . ;훼) and 푀′ (퐺 + 1. − 1 ;훼) 

are the set of all (훼.훼)-walks of length 푙  in 퐺 .  and 퐺 + 1. − 1  
starting and ending at the edges or only one edge in  

Γ( ) ∪ Γ( )and Γ( + 1) ∪ Γ( − 1), 

respectively. Finally, define퐺 . ≔ 퐺(1) and 퐺 + 1. − 1 ≔ 퐺(2). 

        
       

Figure 4. Transformation 퐼. 
 

Suppose that 퐺  is a spiro compound with 푘 quadrangles different from Γ(푘) . For 
푘 < 푘, let 푘 ≔ max{푢: Γ(푢) is a subgraph of 퐺 },  퐵  be the set of all subgraphs that are 
connected to the vertices in which their indices are congruent to 1 or 2 (mod 3) and Γ(푘 ) 
has 푏  quadrangles, 0 ≤ 푖 ≤ 푘 − 푘 . Let 푘 ≔ max{푏 : 0 ≤ i ≤ 푘 − 푘 }, 퐺 be a spiro 

compound with 푘  quadrangles, 훿 ∈ V(퐺) and 퐺 ( , ) be the spiro obtained from 퐺  

by attaching two spiros Γ( ) and Γ( ) at 훿. Let 푁 (퐺 , ; 훿) and 



The Minimum Estrada Index of Spiro Compounds with k−Quadrangles                            247 

 

푁 (퐺 + 1. − 1 ;훿) be the set of all (훼.훼)-walks of length 푙 in 퐺 ,  

and G + 1, − 1  starting and ending at the edges or only one edge in 퐺, 
respectively. Moreover, we assume that  

푁′ (퐺 , ; 훿) and 푁′ (퐺 + 1, − 1 ; 훿) 
are the set of all (훼.훼)-walks of length 푙 in  

퐺 ,  and 퐺 + 1, − 1  
starting and ending at the edges or only one edge in  

Γ( ) ∪ Γ( ) and Γ + 1 ∪ Γ − 1 , 

respectively. Finally, define 퐺 , ≔ 퐺 (1) and 퐺 + 1, − 1 ≔ 퐺 (2). 
By applying Theorem 4.2 in [9], we have the following theorems: 
 

Theorem 2.7.  Let  푙  be a positive integer and ≥ 1. Then 

i. 푀 퐺(2) ;훼 ≤ 푀 퐺(1) ;훼 . 
ii. 푀 퐺(2) ;훼 ≤ 푀 퐺(1) ;훼 . 

iii. 푆 퐺(2) ≤ 푆 퐺(1) . 

The strict inequality holds when 푙 ≥  . 

 
Theorem 2.8. Let  푙  be a positive integer and ≥ 1. Then 

i.  푁 퐺′(2) ;훿 ≤ 푁 퐺′(1) ;훿 . 
ii. 푁 퐺′(2) ;훿 ≤ 푁 퐺′(1) ;훿 . 

iii. 푆 퐺′(2) ≤ 푆 퐺′(1) . 

The strict inequality holds when 푙 ≥  . 
  

Corollary 2.9.   퐸퐸 퐺(2) < 퐸퐸(퐺(1)) .   
   

Proof.   By Theorem 2.7 ,     퐸퐸 퐺(2) = ∑ ( )
!

< ∑ ( )
!

= 퐸퐸(퐺(1)) , proving 
the result.                                                                                                                                ■ 
 
Corollary 2.10.   퐸퐸(퐺′(2)) < 퐸퐸(퐺′(1)) .   

   

Proof.   By Theorem 2.8 ,    퐸퐸(퐺′(2) ) = ∑ ( )
!

< ∑
( )

!
= 퐸퐸(퐺′(1)) , 

proving the result.                                                                                                                   ■ 
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Figure 5. Transformation 퐼퐼. 
 

 Let 퐺 be a spiro compound with 푘 quadrangles and maximum degree ∆ at the vertex 
푢 containing the subgraphs 퐺 ,퐺 , … ,퐺∆/  with exactly one common vertex at 푢 .  Using 
transformations see [18],  퐺 s can be transformed into Γ(푘 )s .  By these transformations, 퐺 
changes into 퐺∗ .  Each application of transformations strictly decreases its Estrada index 
and so 퐸퐸(퐺∗) < 퐸퐸(퐺). Next by repeatedly application of the transformation 퐼 ,  퐺∗ can be 
changed into the graph Γ(푘). So we have the following result :   
 
Theorem 2.11.   Let 퐺 be a spiro compound with 푘 quadrangles  and 훤(푘) be the spiro 
compound as it shown in Figure 3. Then       퐸퐸(Γ(푘) < 퐸퐸(퐺). 
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