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ABSTRACT The purpose of the matching interdiction problem in the weighted graph G  is 
to find a subset of vertices VR *  such that the weight of the maximum matching in the 
graph ]\[ *RVG  is minimized. According to the maximum matching in G , an approximate 
solution, denoted by R , for this problem is presented. Suppose that )(Gv  is the weight of the 
maximum matching in G . In this paper, we consider dendrimers as graphs such that the 
weights of edges are the bond lengths. We obtain the maximum matching in some types of 
dendrimers. Then, we compute the value of ]))\[()((]))\[()(( * RVGvGvRVGvGv   for 
them. It is shown that this ratio in these classes of dendrimers is equal to the maximum value. 
 
KEYWORDS Matching  interdiction  dendrimer. 

 

1. INTRODUCTION 

This paper is based on two concepts in mathematics and chemistry: interdiction and 
dendrimer. First, we explain these concepts. 

In the network interdiction problems, there are two inconsistent forces, the follower 
and interdictor. The follower tries to optimize the objective function by considering some 
constraints in the problem. The interdictor attempts to prevent the action of the follower. 
The interdictor does this act by deleting arcs or vertices of the network. Also, the interdictor 
requires a budget to destroy the arcs or vertices of the network that it is called the 
interdiction budget. The network interdiction problem has been introduced in the 1960s 
[1,2]. The interdiction problem is expressed on some problems such as the maximum flow 
network, the connectivity, the matching, the independent sets and so on [3-6]. In the 
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maximum flow network interdiction problem, the follower maximizes the flow in the 
network. While, the interdictor tries to minimize the maximum flow by deleting arcs of 
network so that the cost of deleting arcs is not more than the interdiction budget. In 1993, 
Wood [3] presented an integer linear programming model for the maximum flow network 
interdiction problem such that this model has been used in many papers [7,8]. He used the 
concept of interdiction to decrease the disruptions in the electric power grids [9]. These 
disruptions are created by terrorist attacks. In 2010, Zenklusen [5] introduced the matching 
interdiction problem. The purpose of this problem is to remove a set of vertices such that 
the weight of the maximum matching in the new graph is minimized. Zenklusen [5] 
presented an approximate solution for this problem. Also, he showed that this problem is 
NP-complete on graphs with unit weights and interdiction costs. The matching interdiction 
problem can be considered on the edges of graph. It has been shown which this problem is 
NP-complete on simple bipartite graphs with unit weights and interdiction costs. The 
definition of interdiction in the independent sets is similar to definition of the matching 
interdiction problem [6]. Also, Shen et al. [4] presented an interdiction problem in graphs. 
The purpose was to remove a subset of vertices in the graph such that the disconnectivity of 
graph is maximized. They introduced three metrics for measuring the connectivity of graph.  

Dendrimers are nanostructures that are used in the biomedicine fields. Dendrimers 
have a central core and are constructed by repetitive processes. The branches similar to tree 
are added to them in each step [10,11]. In other words, dendrimers have three Structural 
components: core, branches and end groups [12]. Research on dendrimers began in the 
1970s. Dendrimers are produced by two methods: convergent and divergent. In the 
convergent approach, dendrimers are made from the end groups. In divergent approach, 
dendrimers grow from the core of molecule [13]. Dendrimers have the applications and 
properties that we express some of them [13]: 

1. Dendrimer can be a therapeutic agent for example in cancer. 
2. Dendrimer is an agent in the delivery of drug. 
3. Physical imprisonment of molecules and atoms can be done within dendrimers. 
4. Dendrimers can be used in gene therapy. 
5. The ibuprofen can be encapsulated by some dendrimers.  

According to structure of dendrimers, they are considered as graphs. Therefore, some 
mathematical problems are expressed on dendrimers. For example, the atom-bond 
connectivity and geometric arithmetic indices of some dendrimers have been calculated in 
[14]. Also, the PI index in some structures has been obtained [15]. In this paper, we 
consider some types of dendrimers such as Pan and Ford's amphiphilic dendrimer, 
Alkylsilane dendrimer, Styrylbenzene dendrimer and aromatic-based, all-hydrocarbon 
dendrimer. Pan and Ford introduced a structure that has the hydrophobic and hydrophilic 
terminal chains and is used as catalysts in aqueous media [16,17]. This dendrimer is 
depicted in Figure 1. Roovers et al. [18] synthesized a series of carbosilane dendrimers 
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using Ptmediated silane alkenylation and vinylation, see Figure 2. Iranmanesh et al. [19] 
computed the Szeged index of Styrylbenzene dendrimer, depicted in Figure 3. In Figure 4, 
an aromaticbased, allhydrocarbon dendrimer is depicted. This dendrimer is prepared in 
gram quantities and its thermal stability in air is at least C350o  [20]. In this paper, first we 
obtain the weight of the maximum matching in these dendrimers such that weights of edges 
are the bond lengths. Then, the approximate and optimal solutions of the matching 
interdiction problem are obtained for them. Also, we compute a special ratio which is 
defined in [5] for this problem.  
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Figure 1. Pan and Ford's Amphiphilic Dendrimer. 
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Figure 2. An Alkylsilane Dendrimer. 
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Figure 3. A Styrylbenzene Dendrimer. 
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Figure 4. An AromaticBased, AllHydrocarbon Dendrimer. 
 
2. BASIC FACTS 

Let ),( GG EVG   be an undirected connected graph such that GV  and GE  are the sets of 
vertices and edges, respectively. An edge in G  is denoted by ),( ji , where GVji , .  Each 
edge GEji ),(  has a weight 0),( jiw . Two edges with a common vertex in G  are called 
adjacent. The matching M  in G  is a set of nonadjacent edges in G . The weight of the 
matching M  is defined as follows: 

.)()( 



Me

ewMw  

The matching GM  is called the maximum matching in G  if )()( MwMw G  , for 
every matching M  in G . Let  kG eeM ,,1   such that )()( 1 kewew  . The weight of 
the maximum matching GM  is denoted by )(Gv . Let  

 .2||,])\[(Min])\[( *  RVRRVGvRVGv GGGG  
*
GR  is called the optimal interdiction set of G . If ),( 111 jie  , the set  11, jiRG   is called the 

approximate interdiction set of G . Notice that 1\ eM G  is a maximum matching in 
]\[ GG RVG . Therefore, 

)1(.)(])\[()( 1ewRVGvGv GG   
Now, Ge  is defined as follows:   
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.
])\[()(
])\[()( *

GG

GG
G RVGvGv

RVGvGve



  

It has been shown that 2Ge  [5].  
We consider dendrimers as graphs as follows: 

1. The atoms in dendrimer are the vertices of graph that are called by their first 
letter. The vertices without name are Carbon.  

2. The covalent bonds between atoms in dendrimer are the edges of graph. 
3. The weight of each edge is equal to the bond length between two atoms. Some 

bond lengths that are used in this paper are presented in Table 1 [21]. 
 

Table 1. The Bond Lengths. 
 

Bond Bond length (pm) 
CN 1471 w  

CC (in hydrocarbons) 1542 w  
CO 1433 w  
SiC 1864 w  
C=C 1345 w  

CC (in benzene) 1396 w  
 
3. MAIN RESULTS 

In this section, we obtain Ge  for the dendrimers in Figures 1  4. Notice that the elements of 

set *
GR  are denoted by the blue points or atoms and the elements of set GM  are denoted by 

red edges in these dendrimers. 
 
3.1. PAN AND FORD'S AMPHIPHILIC DENDRIMER 
 
Consider the sequence of graphs  5

1nnG  which is depicted in Figure 5. The weight of the 
maximum matching in nG , where 51  n , is equal to: 









.5)63(8)(

,4,3,2,1))(12(
)(

234

21

nwwGv
nww

Gv
n

n  

In other words,  









.5246315

,4,3,2,1))(12(
)(

321

21

nwww
nww

Gv
n

n  
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We consider two blue vertices of the graph 5G  in Figure 5 as u  and v . The following 
relation holds for the graph 5G : 

)2(.2)(}]),{\[( 255 5
wGvvuVGv G   

Claim 1.  vuRG ,*
5
 .  

Proof of Claim 1. Let 
5GVV   such that 2V  and  VjViMjiM G  or),(

5
. Hence, 

2M . According to the structure of graph 5G , it is obvious that MM G \
5

 is a matching in 

VG \5 . We denote this matching as 
5GM  . Therefore,  

.),()()(
),(

55 



Mji

G jiwGvMw  

The weights of edges in 5G  are 1w , 2w  and 3w . Since 213 www  , we have 

 


Mji
jiww

),(2 ),(2 . Therefore, the following relations hold: 

)3(.)\(

)(

),()(2)(

5

),(
525

5

VGv

Mw

jiwGvwGv

G

Mji





 


 

Using Eqs. (2) and (3), we have the following relation: 
.)\(}]),{\[( 55 5

VGvvuVGv G   

Since V   is an arbitrary subset of vertices, then },{*
5

vuRG  . The Claim follows.                  

 
Suppose that the Pan and Ford's amphiphilic dendrimer in Figure 1 is denoted by 

1D . The graph 5G  is a subgraph of 1D . By the maximum matching in 5G , the weight of the 
maximum matching in 1D  is obtained as follows: 

.9625362
2)(4)(

321

2151

www
wwGvDv


  

Also, },{**
51

vuRR GD   and the following relation holds: 

.2)(])\[( 21
*

1 11
wDvRVDv DD   

According to Eq. (1), we have: 
.)(])\[( 211 11

wDvRVDv DD   

Therefore, 
1De  is obtained as follows:
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.2
)()(

2)()(

])\[()(
])\[()(

211

211

11

*
11

11

11
1












wDvDv
wDvDv

RVDDv
RVDDv

e
DD

DD
D

 

 
3.2. ALKYLSILANE DENDRIMER 
 
Consider the sequence of graphs  5

1nnS , depicted in Figure 6. The weight of the maximum 
matching in nS , where 51  n , is equal to: 














 

.5161416
,4,3,2)22(2

,12

)(

524

2
1

4

4

nwww
nww

nw

Sv nn
n  

We consider two blue atoms in the graph 5S  in Figure 6 as u  and v . Similar to 

Claim 1, we can prove that the optimal interdiction set in the graph 5S  is },{*
5

vuRS  . 

Therefore, we have the following relation: 
.2)(])\[( 45

*
5 55

wSvRVSv SS   

Suppose that the Alkylsilane dendrimer in Figure 2 is denoted by 2D . The graph 5S  is a 
subgraph of 2D . Using the maximum matching in 5S , the weight of the maximum 
matching in 2D  is equal to 245 33)(4 wwSv   or 245 44)(4 wwSv  . Since 24 ww  , we 
have: 

.645961
33)(4)(

524

2452

www
wwSvDv





 Also, the optimal interdiction set in the graph 2D  is **
52 SD RR   and it is obvious that  

.2)(])\[( 42
*

2 22
wDvRVDv DD   

On the other hand, by Eq. (1) we have: 
.)(])\[( 422 22

wDvRVDv DD   

Therefore, 
2De  is obtained as follows: 

.2
)()(

2)()(

])\[()(
])\[()(

422

422

22

*
22

22

22
2












wDvDv
wDvDv

RVDDv
RVDDv

e
DD

DD
D
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Figure 5. The Sequence of Graphs  5
1nnG . 
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Figure 6. The Sequence of Graphs  5
1nnS . 
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3.3. STYRYLBENZENE DENDRIMER 

Consider the sequence of graphs  1nnH , depicted in Figure 7. The number of hexagons in 

nH , for every 1n , is equal to 12 n . The weight of every edge in nH , where 1n , is 
equal to 2w . Hence, the weight of the maximum matching in nH  is equal to: 

.1,)12(4)( 2  nwHv n
n  

We consider two blue vertices in the sequence of graphs  1nnH  in Figure 7 as u  and v . 

Similar to Claim 1, we can show that },{* vuR
nH  , for every 1n . Therefore, we have: 

.1,2)(])\[( 2
*  nwHvRVHv nHHn nn

 

Now, consider the graph H  in Figure 8. When n  is large, nH  is the subgraph of H . 
Therefore, the weight of the maximum matching in the graph H  is as follows: 

)4(.)32(

7)()(

2
2

2

w

wHvHv
n

n






 

We consider two blue vertices of the graph H  in Figure 8 as u   and v . The graph 
}],{\[ vuVH H   is disconnected with two components. Since nH  is a component of this 

graph, then: 
)5(.5)(}]),{\[( 2wHvvuVHv nH   

Similar to Claim 1, we can conclude that },{* vuRH  . Now, consider the Styrylbenzene 
dendrimer in Figure 3 that is denoted by 3D . Since H  is a subgraph of 3D , it follows:  

)6(.)32(3

)(3)(

2
2

3

w

HvDv
n 




 

By Eq. (1), we have the following relation: 
.)(])\[( 233 33

wDvRVDv DD   

The optimal interdiction set in 3D  is the similar to the optimal interdiction set in the graph 
H . According to Eqs. (4), (5) and (6), we have: 

.2)(

])\[()(2])\[(

23

**
3 33

wDv

RVHvHvRVDv HHDD




 

Hence, 
3De  is obtained as follows: 

.2
)()(

2)()(

])\[()(
])\[()(

233

233

33

*
33

33

33
3












wDvDv
wDvDv

RVDDv
RVDDv

e
DD

DD
D
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Figure 7. The Sequence of Graphs  1nnH . 
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Figure 8. The Graph H . 
 

 

 
3.4. AROMATIC-BASED, ALL-HYDROCARBON DENDRIMER 

Consider the sequence of graphs  3
1nnA  which is depicted in Figure 9. The weight of the 

maximum matching in nA , for every 31  n , is equal to: 

.)423(

)2)22(3()(

62

62

ww

wwAv
n

n
n




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Consider the sequence of graphs  3
1nnB , depicted in Figure 10. The weight of the maximum 

matching in nB , for every 31  n , is equal to: 

.)12(3)( 6wBv n
n   

Suppose that the dendrimer in Figure 4 is denoted by 4D . 3A  and 3B  are the subgraphs of 

4D . There are four cases for the maximum matching in 4D  as follows: 
1. 1M  is the maximum matching of 4D  inclusive an edge of the set },,{ 321 eee . In 

this case, the weight of 1M  is equal to: 

.64
2)(2)()(

62

6331

ww
wBvAvMw



  

2. 2M  is the maximum matching of 4D  inclusive two edges of the set },,{ 321 eee . In 
this case, the weight of 2M  is equal to: 

.622
)()(2)(

62

6332

ww
wBvAvMw



  

3. 3M  is the maximum matching of 4D  inclusive the edges 1e , 2e  and 3e . In this 
case, the weight of 3M  is equal to: 

.603
)(3)(

62

33

ww
AvMw


  

4. 4M  is the maximum matching of 4D  such that it is not inclusive the edges 1e , 2e  
and 3e . In this case, the weight of 4M  is equal to: 

.66
3)(3)(

6

634

w
wBvMw



  

By the above four cases, we have: 
.)()()()( 3214 MwMwMwMw   

Therefore, 4M  is the maximum matching in the graph 4D  and 64 66)( wDv  . Consider the 
subgraph D  of 4D  where has been depicted in Figure 11. There exist three cases for the 
maximum matching in D : 

1. The maximum matching of D  is inclusive an edge of set },{ 21 ee . The weight of 
this matching is equal to: 

.432)()( 62633 wwwBvAv   
2. The maximum matching of D  is inclusive edges 1e  and 2e . The weight of this 

matching is equal to: 
.412)(2 6263 wwwAv   

3. The maximum matching of D  is not inclusive edges 1e  and 2e . The weight of 
this matching is equal to: 
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.453)(2 663 wwBv   
By the above three cases, the weight of the maximum matching in D  is equal to 

645)( wDv  . We consider two blue vertices in the graph 4D  in Figure 4 as u  and v . 

Similar to Claim 1, we can show that },{*
4

vuRD  . Therefore,  

.2)(])\[( 64
*

4 44
wDvRVDv DD   

Also, using Eq. (1) we have: 
.)(])\[( 644 44

wDVRVDv DD   

Therefore, 
4De  is obtained as follows: 

.2
)()(

2)()(

])\[()(
])\[()(

644

644

44

*
44

44

44
4












wDvDv
wDvDv

RVDDv
RVDDv

e
DD

DD
D
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Figure 9. The Sequence of Graphs  3

1nnA . 
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Figure 10. The Sequence of Graphs  3
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Figure 11. The Graph D . 
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