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ABSTRACT An acyclic edge coloring of a graph is a proper edge coloring such that there are 
no bichromatic cycles. The acyclic chromatic index of a graph G  denoted by )(' Ga  is the 

minimum number k such that there is an acyclic edge coloring using k  colors. The maximum 
degree in G denoted by ∆(G), is the lower bound for )(' Ga . Pcuts introduced in this paper 
acts as a powerful tool to prove that this bound is sharp for certain chemical structures.  

KEYWORDS Acyclic edgecoloring  acyclic chromatic index   maximum degree  certain 
chemical structures. 

 
 

1. INTRODUCTION 

A molecular graph is a collection of vertices representing the atoms in the molecule and a 
set of edges representing the covalent bonds. Graph representation of molecular structures 
is widely used in computational chemistry [1]. A coloring of the edges of a graph is proper 
if no pair of incident edges receive the same color. The edge-colorings of graphs are shown 
to be useful in multiple quantum Nuclear Magnetic Resonance(NMR) from which one 
would obtain various types of dipolar couplings present in a molecule. The question then is 
in how many different ways could one assemble the dipolar couplings. Each such way 
corresponds to a possible structure of the unknown compound. The edge-colorings of 
graphs are shown to enumerate unique dipolar interactions amoung a given set of nuclei 
thereby providing a technique for structure elucidation from NMR [2, 3]. 

A proper coloring of the edges of a graph is acyclic if there is no two-colored 
(bichromatic) cycle in that graph. In other words, the subgraph induced by the union of any 
two color classes is a forest. The minimum number of colors required to edge-color a graph 
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acyclically is termed the acyclic chromatic index. The notion of acyclic coloring was 
introduced by Grunbaum [4]. Determining acyclic chromatic index for an arbitrary graph is 
an NP-complete problem [5]. The problem of determining the number of cycles in a graph 
is NP-complete [6]. Therfore computing acyclic chromatic index even for very special 
classes of graphs is challenging. The acyclic edge-colorings of graphs are also shown to 
have applications in the enumeration of unsaturated isomers of a class of organic 
compounds [7]. They also have applications in statistical mechanics in enumerating the 
number of statistical mechanical diagrams [8]. Further the acyclic edge-coloring of graphs 
enables classification of kekule structures into equivalence classes of structures such that all 
structures in a class have the same resonance energy [10, 9].  

The results obtained so far use only probablistic methods of proof [11]. In this paper 
we compute the exact acyclic edge-chromatic index of certain chemical structures by 
introducing Pcuts.  
 
2.  ACYCLIC CHROMATIC INDEX USING P-CUTS 

We give the basic definitions and preliminaries which are required for the remaining study. 
A graph G  is an ordered triple ( )(),(),( GGEGV  ) consisting of a non-empty set )(GV  of 
vertices, a set )(GE  disjoint from )(GV  of edges and an incident function )(G , that 
associates with each edge of G  an unordered pair of (not necessarily distinct) vertices of 
G . The degree of a vertex of a graph G  is the number of edges incident to the vertex, with 
loops counted twice. The degree of a vertex v  is denoted as )(deg v . The maximum degree 
of a graph G  is denoted by )(G .  
 
Definition 2.1 [12] A proper edge-coloring of a graph G  is an assignment of "colors" to 
the edges of G  such that no two adjacent edges receive the same color. The minimum 
number of colors required to edge-color a graph G  is termed as chromatic index of G and 
is denoted by )(G  .  
 
Definition 2.2 [13, 14] A proper edge-coloring of a graph G  is acyclic if there is no two-
colored (bichromatic) cycle in G . The minimum number of colors required to edge-color a 
graph G  acyclically is termed as acyclic chromatic index of G  and is denoted by )(' Ga .  

  
Definition 2.3 [15] The girth of a graph G  is the length of a shortest cycle contained in G .  

  
Definition 2.4 [16] An edge-cut of a graph G  is a set of edges in G  whose removal 
produces a subgraph with more components than the original graph G .  
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Lemma 2.5 [17] Let G  be any planar graph, then )()()(' GGGa   .  
 
We inroduce a technique to compute acyclic chromatic index )(' Ga  in planar 

graphs. We define P -cuts in planar graphs to obtain lower bound on )(' Ga  and prove that 
the bound is sharp for certain chemical structures.  
 
Definition 2.6 Let G  be a planar graph and },,{= 21 kSSSS   be a collection of subsets of 

)(GE . S  is called a P -cut if it satisfies the following conditions: 

  1. Each iS  is an edge-cut of G  such that 3iS  and no two edges in iS  share a 

common vertex of G , ki 1 . 
  2. No edge in iS  is adjacent to any edge in jS , iji  ,1 , kj  . 

  3. }{\
1=

i

k

i

SG   induces a partition 121 ,..,, kVVV  of )(GV , each inducing a path in G .  

 
Theorem 2.7 Let G  be a planar graph. If G  has a P -cut, then 3=)(G .  
 
Proof. Removal of set of edges in G  disconnects the graph into 1k  disjoint paths. The 
maximum degree of path is 2. Every cycle in G  passes through at least two edges of some 

iS . Therefore the maximum degree of G  is increased by one. Hence 3=)(G .  
 

Theorem 2.8 Let G  be a planar graph of girth    4. If G  has a P -cut, then 3=)(' Ga .  
 
Proof. For every pair of edges ),( xu  and ),( yv  in iS  
 
Case (i): ),(=),( yxdvud  and girth   4. 

Color the edges in k
i iS1  with color 1c . Any path has an acyclic chromatic 

number 2 and hence it can be colored with 2 colors. Color the paths iP  induced by 

}{\ 1k
i iSG   using colors 2c  and 3c . Every cycle in G  passes through at least two edges of 

some iS . Since the length of the paths are equal, any cycle formed will be colored with 
three colors. 

 
Case (ii): ),(),( yxdvud   and girth   5. 

Color the edges in k
i iS1  with color 1c . Any path has an acyclic chromatic 
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number 2 and hence it can be colored with 2 colors. Color the paths iP  induced by 

}{\ 1k
i iSG   using colors 2c  and 3c . Every cycle in G  passes through at least two edges of 

some iS . Since there is no 4-cycle in G , any cycle formed will be colored with three 
colors. 

 
Case (iii): ),(),( yxdvud   and girth = 4. 

Color the path iP  induced by }{\ 1k
i iSG   except for the edges in the four cycle by 

1c  and 2c . Color the edges in iS  by 2c  and 3c  or 3c  and 1c  such that every cycle of girth   

5 has two different colors in iS . Color the four cycle in such a way that if two edges in iS  
has same color then color the remaining two edges by other two colors and if two edges in 

iS  has different color then color the remaining two edges by remaining one color. Every 
four cycle in G  is colored with three colors. Every cycle in G  passes through at least two 
edges of some iS  and therefore any cycle of girth   5 will be colored with three colors. 
Hence any cycle formed will be colored with three colors.  
 
3. NANOSHEETS WITH ACYCLIC CHROMATIC INDEX 3 

Carbon nanosheets are a new kind of two-dimensional polymeric material that is fabricated 
by cross-linking aromatic self-assembled monolayers with electrons. Due to their uniform 
thickness of only about one nanometer, as well as their high chemical, mechanical, and 
thermal stability, such materials are of high interest for a wide variety of applications[18]. 
As the nanosheet is stable under an electron beam, patterns can also be written by electron 
beam induced deposition (EBID). Because of their stability and flexibility, carbon 
nanosheets will likely find a multitude of applications, including potential use as sensors, 
filtration membranes, sample supports, and even conductive coatings [19]. 

 
3.1 ],2)[2(84 nmRCC  Nanosheet 

A ],2)[2(84 nmRCC  nanosheet is a trivalent decoration made by alternating squares 4C  and 
octagons 8C  and it is a bi-regular graph with m  number of rows and n  number of 
columns. The ],2)[2(84 nmSCC  nanosheet has 1)1)(4(  nm  vertices [1, 20]. 
 
Theorem 3.1 Let G  be a ],2)[2(84 nmRCC  nanosheet. Then 3=)(' Ga .  
Proof. Let G  be a ],2)[2(84 nmRCC  nanosheet and },,{= 221 nSSSS   be a set of P -cuts, 
such that removal of edges in P -cuts disconnects the graph into disjoint paths. See Figure 
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1. By Theorem 2.8, 3=)(' Ga .  
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Figure 1. Acyclic edge-coloring of )[6,8](84 RCC  nanosheet. 
  
 

3.2 ],2)[2(84 nmSCC  Nanosheet 

A ],2)[2(84 nmSCC  nanosheet is a trivalent decoration made by alternating squares 4C  and 

octagons 8C  and is a bi-regular graph with m  number of rows and n  number of columns. 

It is a bipartite graph. The ],2)[2(84 nmSCC  nanosheet has mn8  vertices [21]. 

2

3

2
3

2

3

2
3

2

3

2
3

2

3

2

2

3

2
3

2

3

2
3

2

3

2
3

2

3

2

2

3

2
3

2

3

2
3

2

3

2
3

3

2

3

2

3
2

3

2

3
2

3

2

3
2

3

2

3

3

2

3
2

3

2

3
2

3

2

3
2

3

2

3

3

2

3
2

3

2

3
2

3

2

3
2

3

2

3

S1

S2

S3

S4

S5

 
Figure 2. Acyclic edge-coloring of )[6,8](84 SCC  nanosheet. 
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Theorem 3.2 Let G  be a ],2)[2(84 nmSCC  nanosheet. Then 3=)(' Ga .  

Proof. Let G  be a ],2)[2(84 nmSCC  nanosheet and },..,{= 1221 mSSSS  be a set of P -cuts, 
such that removal of edges in P -cuts disconnects the graph into disjoint paths. See Figure 
2. By Theorem 2.8, 3=)(' Ga .  
 
3.3 ],[6 nmC  Nanosheet 

A ],[6 nmC  nanosheet is a trivalent decoration made by haxagon 6C  and it is a bi-regular 
graph with m  number of rows and n  number of columns. A nanosheet with wrap-around 
edges is called a nanotube. A ],[6 nmC  nanotube is called as Peri-condensed Benzenoids 

graph. The ],[6 nmC  nanosheet has mn 2)4(   vertices [1, 22]. 
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Figure 3. Acyclic edge-coloring of [3,5]6C  nanosheet. 

 
Theorem 3.3 Let G  be a ],[6 nmC  nanosheet. Then 3=)(' Ga .   

Proof. Let G  be a ],[6 nmC  nanosheet and },..,{= 21 mSSSS  be a set of P -cuts, such that 
removal of edges in P -cuts disconnects the graph into disjoint paths. See Figure 3. By 
Theorem 2.8, 3=)(' Ga .  
 
3.4 ],[765 nmCCC  Nanosheet 

A ],[765 nmCCC  nanosheet is a trivalent decoration made by alternating pentagon 5C , 

hexagon 6C  and septagon 7C  and is a bi-regular graph with m  number of rows and n  

number of columns. The ],[765 nmCCC  nanosheet has mmn 216   vertices [23].  
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Figure 4. Acyclic edge-coloring of [3,6]765 CCC  nanosheet. 
 

Theorem 3.4 Let G  be a ],[765 nmCCC  nanosheet. Then 3=)(' Ga .  

Proof. Let G  be a 765 CCC  nanosheet and },..,{= 21 mSSSS  be a set of P -cuts, such that 
removal of edges in P -cuts disconnects the graph into disjoint paths. See figure 4. By 
Theorem 2.8, 3=)(' Ga .  

 
3.5 ],[75 nmCC  Nanosheet 

A ],[75 nmCC  nanosheet is a trivalent decoration made by alternating hexagons 5C  and 

septagons 7C  and is a bi-regular graph with m  number of rows and n  number of columns. 

The ],[75 nmCC  nanosheet has mmn8  vertices [23].  
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Figure 5. Acyclic edge-coloring of [4,7]75CC  nanosheet. 
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Theorem 3.5 Let G  be a ],[75 nmCC  nanosheet. Then 3=)(' Ga .  

Proof. Let G  be a ],[75 nmCC  nanosheet and },..,{= 21 mSSSS  be a set of P -cuts, such that 
removal of edges in P -cuts disconnects the graph into disjoint paths. See Figure 5. By 
Theorem 2.8, 3=)(' Ga .  

 
 

3.6 ],2[2864 nmCCC  Nanosheet 

A ],2[2864 nmCCC  nanosheet is a trivalent decoration made by alternating squares 4C , 

hexagons 6C  and octagons 8C  and is a bi-regular graph with m  number of hexagons in 

each row and n  number of hexagons in each column. The ],2[2864 nmCCC  nanosheet has 
mn6  vertices.  

 
Theorem 3.6 Let G  be a ],2[2864 nmCCC  nanosheet. Then 3=)(' Ga .  
Proof. Let G  be a ],2[2864 nmCCC  nanosheet and },..,{= 21 mSSSS  be a set of P -cuts, such 
that removal of edges in P -cuts disconnects the graph into disjoint paths. See Figure 6. By 
Theorem 2.8, 3=)(' Ga .  

 

2 3

3 2

2 2

3 3

2 332 3 2 3 2 2 3 2 3

3 2 3 2 2 3 2 3 3 2 3 2

2 3 2 3 3 2 3 2 3 2 3 2

3 2 3 2 3 2 3 2 3 2 3 2

S1

S2

S3

 
Figure 6. Acyclic edge-coloring of [4,8]864 CCC  nanosheet. 

 
 

3.7 H -Naphtalenic [ nm,22 ] Nanosheet 

A H -Naphtalenic [ nm,22 ] nanosheet is a trivalent decoration made by alternating squares 

4C ,pair of hexagons 6C  and octagons 8C  and it is a bi-regular graph with m  number of 
rows and n  number of columns. The H -Naphtalenic [ nm,22 ] nanosheet has mn10  
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vertices [1, 24].  
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Figure 7. Acyclic edge-coloring of H -Naphtalenic [4,6] nanosheet.  

 
 

Theorem 3.7 Let G  be a H -Naphtalenic ],2[2 nm  nanosheet. Then 3=)(' Ga .  
Proof. Let G  be a H -Naphtalenic ],2[2 nm  nanosheet and },..,{= 1221 mSSSS  be a set of 
P -cuts, such that removal of edges in P -cuts disconnects the graph into disjoint paths. See 
Figure 7. By Theorem 2.8, 3=)(' Ga .  
 

4.  CONCLUSION 

In this paper we have proved that )(=)(' GGa   for certain nanosheets. The problem of acyclic 
edge-coloring of certain chemical structures with chromatic number 1)(  G  is under 
investigation. 
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