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ABSTRACT The harmonic index )(GH , of a graph G  is defined as the sum of weights 
1))deg()(deg(2  vu of all edges in )(GE , where deg (u) denotes the degree of a vertex u in 

V(G). In this paper we define the harmonic polynomial of G  as 

 


)(
1)deg()deg(2),(

GEuv
vuxxGH , where  

1

0
)(),( GHdxxGH . We present explicit 

formula for the values of harmonic polynomial for several families of specific graphs and we 
find the lower and upper bound for harmonic index in Caterpillars of diameter 4. 

KEYWORDS Harmonic index  harmonic polynomial  Randić index.  
 

 

1. INTRODUCTION 

All graphs in this paper are finite, simple and connected. For terms and concepts not 
defined here we refer the reader to any of several standard monographs such as, e.g., [1, 2]. 
Let G  be a graph on n vertices. We denote the vertex set and the edge set of G  by )(GV  
and )(GE , respectively. Also we denote |)(| GVn   and |)(| GEm  .  For two vertices u  
and v  of )(GV  the distance between u and v denoted by ),( vud  and defined as the length 
of any shortest path connecting u  and v  in G . For a given vertex u  of )(GV its 
eccentricity )(u  is the largest distance between u  and any other vertices of G . The 
maximum eccentricity over all vertices of G  is called the diameter of G  and is denoted 
by )(GD .  

The structure property relationship quantity makes a connection between the 
structure and properties of molecules. In 1975, Randić proposed a new structural descriptor 
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[3], which is defined as the sum of the weights 2/1))deg()(deg( vu  of all edges uv  of G . 

It is defined as  
 )(

2/1))deg()(deg()( GEuv vuGR . Later, the Randić index had been 

extended as the general Randić index by replacing 1/2 with any real number  and 
denoted by  


)(

))deg()(deg()(
GEuv

vuGR 
 . 

The harmonic index is one of the most important indices in chemical and 
mathematical fields. It is a variant of the Randić index which is the most successful 
molecular descriptor in structure-property and structure activity relationships studies. The 
harmonic index gives somewhat better correlations with physical and chemical properties 
comparing with the well known Randić index.  

The harmonic index )(GH  of a graph G  is defined as 

 
 )(
1))deg()(deg(2)( GEuv vuGH . This index was first appeared in [4]. Estimating bounds 

for )(GH is of great interest, and many results have been obtained. For example, Favaron et 
al. [5] considered the relationship between the harmonic index and the eigenvalues of 
graphs; Zhong [68] determined the minimum and maximum values of the harmonic index 
for simple connected graphs, trees, unicyclic graphs and bicyclic graphs, and characterized 
the corresponding extremal graphs, respectively. It turns out that trees with maximum and 
minimum harmonic index are the path Pn and the star Sn, respectively. And the star Sn also 
reaches the minimum harmonic index in simple connected graphs. Li and Shiu [9] studied 
how the harmonic index behaves when the graph is under perturbations and provided a 
simpler method for determining unicyclic graphs with maximum and minimum harmonic 
index among all unicyclic graphs, respectively. Moreover, lower bounds for harmonic 
index are also obtained in [9] and [10], respectively. Recently, Deng et al. [11] studied the 
relationship between the harmonic index and the chromatic number of a graph G, and 
obtained the lower bound for )(GH in terms of its chromatic number. Lv and Li [12] 
studied the relationship between the harmonic index and the matching number for trees, and 
determined the trees with minimum harmonic index among trees with a perfect matching 
and among trees with a given matching number, respectively. The relationship between the 
harmonic index and the matching number for unicyclic graphs, The graph with minimum 
harmonic index among all unicyclic graphs with a perfect matching and the graph with 
minimum harmonic index among all unicyclic graphs with a given matching number are 
determined in [13].  

In this paper, for the first time the harmonic polynomial of a graph G  is defined as 

 
 )(
1)deg()deg(2),( GEuv

vuxxGH , where  
1

0
)(),( GHdxxGH . We obtain 

explicit formulas for the harmonic polynomial of several familiar classes of graphs. 
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Proposition 1. [4] )()( GRGH   with equality if and only if G  is a regular graph. 
 

Proposition 2. If G  is a k-regular graph, then 122),(  kxmxGH  and 2/)( nGH  . 
 

Proof. Since G  is kregular, so for every edge in G we have 121)deg()deg(   kvu xx and 
hence, 122),(  kxmxGH . Computation of )(GH with using this fact that in kregular 
graphs 2/nkm   is straightforward. 
 

Proposition 3. We have  
(1) 32)1(),(  n

n xnnxKH ; 

(2) 32),( nxxCH n  ; 

(3) 56),( nxxH n  ; 

(4) 78),( nxxAH n  ; 

(5) 122),(  nn
n xnxQH . 

Here by nK , nC , n , nA  and nQ  we denote the complete graph on n  vertices, the 
cycle on n  vertices, the n −sided prism, the n −sided antiprism, and the n −dimensional 
hypercube, respectively, as shown in Figure 1. 
 

 

Figure 1. The graphs 7K , 7C , 7 , 7A  and 7Q from left to right. 

 

Proof. The proof can obtain by using of Proposition 2. 
 

The following results can be easily obtained by a straightforward computation. 
 
Proposition 4.  Let nmK , , be a complete bipartite graph on nm   vertices. For 2, nm , we 

have 1
, 2),(  nm
nm mnxxKH . In particular 122

, 2),(  n
nn xnxKH  for  2n . 

 
For the case of complete bipartite graphs nmK ,  , when one of the classes of 

bipartition is of size 1 is treated separately.  In order to facilitate the comparison with other 
trees on n  vertices, we find it more convenient to state the result as follows. 
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Proposition 5. Let 1,1  nn KS  be a star on 3n  vertices. Then 1)1(2),(  n

n xnxSH  . 

 
Proposition 6. Let nW  and nB denote the graphs of the pyramid and the bipyramid with 

n −gonal base. Then  )(2),( 25  n
n xxnxWH  and )2(2),( 37  n

n xxnxBH , (Figure 2). 

(The pyramid graph nW  is also known as the wheel graph on n spokes.) 

 

Figure 2. Pyramid and bipyramid graphs. 
 

It is remained to compute the harmonic polynomial for the graph path nP , in which 
harmonic index reach to maximum value in trees. 
 
Proposition 7. Let nP  be a path with n  vertices. Then 32 )3(24),( xnxxPH n  . 

 

2. HARMONIC POLYNOMIAL AND HARMONIC INDEX IN CATERPILLARS 

In this section we try to compute the harmonic polynomial and harmonic index in 
Caterpillars. Recall first that a Caterpillar is a tree in which the removal of all terminal 
vertices (i.e. those of degree 1) gives a path.  

 Let ),,,,( 110 dd mmmm    be a Caterpillar obtained from a path of length d say P 

by attaching to its ith vertex  0im  hanging edges ),1,,1,0( ddi   , (Figure 3). Clearly, 

),,,,( 110 dd mmmmT    is of diameter d only if 00  dmm ; note also that T has 

 


d

i imdn
0

1 vertices and  


d

i imdm
0

edges.  

 
m0 m1 md-1 md

 

Figure 3. Caterpillar ),,,,( 110 dd mmmm   . 
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Theorem 8.  
a) The harmonic polynomial of Caterpillar ),,,,( 110 dd mmmm   is equal to  
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b) The harmonic index of ),,,,( 110 dd mmmm    is equal to  
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Proof.  We partition the set of edges into two subsets. First the edges on path P, and second 
the terminal edges. For the first kind of edges we have:   

2
2

1

32
)(

1 1110 2222 








    ddiivu mm
d

i

mmmm
GEuv

dd xxxx  

and for the second partition we have: 

1
1

1

21
0)(

1 2222 0 








   divu m
d

d

i

m
i

m
GEuv

dd xmxmxmx . 

The proof of part (b) is obvious from the definition.                                                            � 
 

We restrict our computation to the Caterpillars with diameter four. These 
Caterpillars in terms of length of path P are divided to three kind; length 3, 4 and 5. We 
show these three kind briefly by ),,( cba , ),,,0( dcb  and )0,,,,0( dcb . It is easy to see 
that  ),,1(),,,0( dcbTdcb   and )1,,1()0,,,,0(  dcbTdcb , (Figure 4). Therefore 
for finding extremal graphs in this family, it is enough to work with first kind of 
Caterpillars. By using Theorem 8 we have: 

 
22121 22222)),,,((   cbbacba xxcxbxaxxcbaH  

and 
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a cb cb d cb d

T( a, b, c) T( 0, b, c, d) T( 0, b, c, d, 0)  
Figure 4. Caterpillars of diameter 4. 

 
Theorem 9. Let ),,( cba  be a Caterpillar with diameter 4 , also 1a  and 2c .  Then 

))1,,1(()),,((  cbaTHcbaH and equation is hold if and only if 



 


2
3 bna  and 





 


2
3 bnc . 

 
Proof. Without loss of generality, assume that ca  . If ca  , with using the fact that 

),,(),,( abcTcba  , we can replace a with c.  Let the vertices on path P are denoted by 
 ,,  with the degree sequence 1a , 2b , 1c , respectively. Since 1a after 

transformation,  the degree  of   increases and degree of   decreases by one. We will 
consider the difference ))1,,1(()),,((  cbaTHcbaH in two cases. 
 Case 1: 0b . In this case we have: 
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Since  ca  , we have kac   for some positive integer k. So 
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 Case2: 0b . Since for every  1,, cba  we have: 
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so in this case we have also: 0 . It is obvious that the equality is hold for 





 


2
3 bna  and 



 


2
3 bnc .                                                                                      � 

 
Collorally 10. When b  is fixed, the maximum and minimum values of harmonic index 

occur in 











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



 


2
3,,

2
3 bnbbn  and  4,,1  bnb , respectively. 

 
Proof.  The proof is straightforward.                                                                                     � 

 
Theorem 9 and Collarally 10 are useful when b is a fixed number. While for fixed 

a  (similarly for c ) we have the following theorem. 
 
Theorem 11. Let ),,( cba  are Caterpillars with diameter 4, where 1a and 2c . Then  

))1,1,(()),,((  cbaTHcbaH   
and 

))1,1,(())1,,1((  cbaTHcbaH . 
 
Proof. The proof is similar to the proof of Theorem 9.                                                         � 
 

The following corollary is immediate consequence of Theorem 11. 
 
Corollary 12. When a  is fixed, the maximum and minimum values of harmonic index 

occur in 
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2
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Our main theorem is the following theorem. 

 
Theorem 13. For every Caterpillar,  
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Proof. By easy calculation we can prove theorem for 19n  and 19n . Suppose 
that 19n . Then we have:  
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Now by using a similar method to the proof of Theorem 9 the proof is complete. 

 
Example. The harmonic index for n=16 are presented in the following table. We know that 
in this kind of Caterpillars 3 ncba . So the lower and upper bounds occur in 

)12,0,1(  and )5,4,4( as have been shown in Table 1. 
 

Table 1. Harmonic index for n = 16. 

 1a  2a  3a  4a  5a  6a  

0b  3.0142 3.2352 3.3538 3.4220 3.4604 3.4778 

1b  3.3924 3.6428 3.7760 3.8500 3.8882 3.9000 

2b  3.6000 3.8650 4.0038 4.0778 4.1104  

3b  3.7220 3.9928 4.1316 4.2000 4.2208  

4b  3.7928 4.0634 4.1968 4.2532   

5b  3.8278 4.0928 4.2142 4.2500   

6b  3.8334 4.0866 4.1872    

7b  3.8104 4.0428 4.1076    

8b  3.7546 3.9512     

9b  3.6538 3.7858     

10b  3.4814      

11b  3.1714       
 

3. CONCLUSION 

In this paper the lower and upper bound for harmonic index of Caterpillars with diameter 
four is computed. To the best of our knowledge it is the first paper considering the 
harmonic polynomial of a graph.  We think it is possible to extend these calculations for 
other important families of graphs. 
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