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ABSTRACT In this paper, we present some inequalities for the Co-PI index involving the 
some topological indices, the number of vertices and edges, and the maximum degree. After 
that, we give a result for trees. In addition, we give some inequalities for the largest 
eigenvalue of the Co-PI matrix of G. 
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1. INTRODUCTION 

Let ( , )G V E  be a finite connected simple graph with n V  vertices and m E  edges. 

For vertices  ,u v V ,  the distance ( , )d u v  is defined as the length of the shortest path 
between  u  and v in G. The diameter ( )diam G  is the greatest distance between two vertices 
of G. The degree deg ( )G v  of a vertex v is the number of edges incident with it in G. Let 
e uv  be an edge connecting vertices u and v in G. Define the sets: 

 
 

( ) | ( , ) ( , )

( ) | ( , ) ( , )
u G G

v G G

N e z V d z u d z v

N e z V d z v d z u

  

  
 

which are sets consisting of vertices lying closer to u than to v and those lying closer to v 
than to u, respectively. The number of such vertices are denoted by  

( ) ( )u u un n e N e   and ( ) ( )v v vn n e N e  . 
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Other terminology and notations needed will be introduced as it naturally occurs in 
the following and we use [1,2,3] for those not defined here. A topological index is a number 
related to graph which is invariant under graph isomorphism.  

In theoretical chemistry, molecular structure descriptors (also called topological 
indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and 
other properties of chemical compounds [2]. There exist several types of such indices, 
especially those based on vertex and edge distances. One of the most intensively studied 
topological indices is the Wiener index W, defined as the sum of distances between all pairs 
of vertices of the molecular graph [4,5]. The vertex PI index [8,9,10], Szeged index [5,6,7] 
and the first Zagreb index [11,12], defined as follows: 
 

( )

( )

( ) ( ) ( ),

( ) ( ) ( )

v u v
e E G

u v
e E G

PI G n e n e

Sz G n e n e




 






 

and 

2
1

( )
( ) deg ( )

v V G
M G v



  , 

respectively. 

Recently, Hassani et al. introduced a new topological index similar to the vertex 
version of PI index [14]. This index is called the Co-PI index of G and defined as: 

( )
( ) ( ) ( ) .v u v

e uv E G
Co PI G n e n e

 

                                             (1) 

Here the summation goes over all edges of G. Fath-Tabar et al. proposed the Szeged 
matrix and Laplacian Szeged matrix in [13]. Then Su et al. introduced the Co-PI matrix of a 
graph [15]. The adjacent matrix ( ) ij n n

A G a


     of  G  is the integer matrix with rows and 

columns indexed by its vertices, such that the ij  th entry is equal to the number of edges 
connecting i and j. Let the weight of the edge e uv  be a non-negative integer 

( ) ( )u vn e n e , we can define a weight function:  : 0w E R  on E, which is said to be 

the Co-PI weighting of G. The adjacency matrix of G weighted by the Co-PI weighting is 
said to be its Co-PI matrix and denoted by ( ) .CPI ij n n

M G c


    That is, 
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( ) ( ) ,  

0                     , otherwise.
i jv v i j

ij

n e n e e v v
c

   


 

Its eigenvalues are said to be the Co-PI eigenvalues of G and denoted by *( )
i

G  for 

1, 2,..., .k V Easy verification shows that the Co-PI index of G can be expressed as one 

half of the sum of all entries of  ( ),CPIM G  i.e., 

1

1( ) ( )
2 i

n

v CPI
i

Co PI G M G


   , 

where 
iCPIM is the sum of i-th row of the matrix .CPIM   

In this paper, we establish some bounds for the Co-PI index, then we give a lower 
and upper bounds for trees. In addition, some inequalities for the largest eigenvalue of the 
Co-PI matrix are computed. 

 

2. MAIN RESULTS 

In this section, we give some bounds for the Co-PI index.  

 

Theorem 2.1. Let G be a connected graph with 2n   vertices and m edges. Then,   

( ) ( 2)vCo PI G m n    

with equality if and only if  G is isomorphic to .nS  

 

Proof. Let e uv   be an arbitrary edge. Since ( ) ( ) 2u vn e n e n    by (1), we have  

( ) ( )
( ) ( ) ( ) ( 2) ( 2)v u v

e uv E G e uv E G
Co PI G n e n e n m n

   

         

with equality if and only if ( ) 1un e n   and ( ) 1vn e   if and only if G  is isomorphic to the 

star graph .nS   
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We present the our lemma which will be used for the following three main results 
(Theorem 2.2, 2.3 and 2.4). 
 
Lemma 2.1. Let G be a connected graph with 2n   vertices and m edges. Then, 

2 2 2

( )
( ) ( ) ( 2 2)u v

e uv E G
n e n e m n n

 

       

with equality if and only if G is isomorphic to .nS  
 
Proof. Let e uv   be an edge of the graph G. As the maximum value of ( )un e  is 1n   and 

the minimum value of ( )vn e  is 1, we get 
2 2 2 2( ) ( ) ( 1) 1 .u vn e n e n     

After summing over all edges of G, we have  

 2 2 2 2

( ) ( )
( ) ( ) 2 2 2 2 .u v

e uv E G e uv E G
n e n e n n m n n

   

               

Equality holds if and only if ( ) 1un e n   and ( ) 1vn e   if and only if G is isomorphic to the 

star graph .nS  
 
Theorem 2.2. Let G be a connected graph with 2n   vertices and m edges. Then, 

2( ) ( 2 2) 2 ( )vCo PI G m m n n Sz G      

with equality if and only if G is isomorphic to .nS  
 
Proof. Let e uv   be an arbitrary edge. From (1) , the Cauchy-Schwarz inequality (shortly 
C-S inequality) and Lemma 2.1, we have  
 

( )

2

( ) ( )

2

( ) ( ) ( )

                    1 ( ( ) ( ))

                    ( 2 2) 2 ( )

v u v
e uv E G

u v
e uv E G e uv E G

Co PI G n e n e

n e n e

m m n n Sz G

 

   

  

 

   



   

with equality if and only if  ( ) 1un e n   and ( ) 1vn e   if and only if G  is isomorphic to the 

star graph .nS  
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Theorem 2.3. Let G be a connected graph with 2n   vertices and m edges. Then, 

2 2( ) ( 2 2) 2 ( ) ( 1)( 2)vCo PI G m n n Sz G m m n         

with equality if and only if G is isomorphic to .nS  
 
Proof. Let e uv   be an arbitrary edge. By (1), we have 
 

2 2 2

( )

'
'

2 2

( ( )) ( ) ( ) 2 ( ) ( )

                         2 ( ) ( ) ( ') ( ')

                         ( 2 2) 2 ( ) ( 1)( 2)

v u v u v
e uv E G

u v a b
e uv
e ab
e e

Co PI G n e n e n e n e

n e n e n e n e

m n n Sz G m m n

 





     

 

      



  

from Lemma 2.1. Thus, 

2 2( ) ( 2 2) 2 ( ) ( 1)( 2)vCo PI G m n n Sz G m m n         

with equality if and only if ( ) 1un e n   and ( ) 1vn e   if and only if G  is isomorphic to the 

star graph .nS  
 

Next result is a lower bound for the Co-PI index. 
 
Theorem 2.4. Let G be a connected graph with 2n  . Then,  
 

 2( ) 2 2 2 ( ) .vCo PI G n n Sz G      

Equality holds if and only if G is isomorphic to the 2K . 

Proof. Let e uv  be an arbitrary edge. Using (1) 

2 2 2

( )

'
'

2

( ( )) ( ) ( ) 2 ( ) ( )

                         2 ( ) ( ) ( ') ( ')

                         ( 2 2) 2 ( )

v u v u v
e uv E G

u v a b
e uv
e ab
e e

Co PI G n e n e n e n e

n e n e n e n e

n n Sz G

 





     

 

   



  
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Hence the result. Equality holds if and only if ( ) ( ) 1u vn e n e   if and only if G  is 

isomorphic to the 2K . 
 

We will establish relations for the Co-PI index using the following Ozeki inequality. 
 
Theorem 2.5 (Ozeki Inequality [19]) If 1 2( , ,..., )na a a and 1 2( , ,..., )nb b b are 1n    tuples of 

real numbers satisfying 1 10 im a M    and 2 20 im b M   for 1, 2,...,i n  then  
2

2 2 2 2
1 2 1 2

1 1 1

1 ( ) .
3

n n n

i i i i
i i i

a b a b n M M m m
  

          
    
    

 
Theorem 2.6. Let G be a connected graph with 2n  . Then,  

2
2 2( ) ( 2) ( ) 4 ( )

3v v
mCo PI G n PI G mSz G      

equality holds if and only if G is isomorphic to the 2K . 
 
Proof. By setting in Theorem 2.5 the values 1ia   and ( ) ( )i u vb n e n e   for 1, 2,...,i m , 
we have 

 
2

2 2 2
1 2 1 2

1 ( ) ( )

11 ( ) ( ) ( ) ( ) ( )
3

m

u v u v
i e uv E G e uv E G

n e n e m M M m m n e n e
    

             
     
    

Since 1 1 1m M  , we need to estimate the upper and lower bounds for ib , it is known that 
 

 2 ( )
max ( ) ( )u ve uv E G

M n e n e n
 

    

and 
 2 ( )

min ( ) ( ) 2.u ve uv E G
m n e n e

 
    

Then we have, 

 
2

2 2 2

( ) ( )

1( ) ( ) ( 2) ( ) ( )
3u v u v

e uv E G e uv E G
m n e n e m n n e n e

   

 
     

 
   .                   (2) 

Using (1) and the C-S inequality, we obtain 
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 2

( ) ( )

2 2

( ) ( )

( ) ( ) ( ) ( )

                                ( ) ( ) 2 ( ) ( ).
u v

u v u v
e uv E G e uv E G

u v
e uv E G e uv E G

n e n e m n e n e

m n e n e m n e n e

   

   

  

  

 

 
                   (3) 

Combining equalities (2) and (3), we complete the proof. The equality holds if and 
only if 2n   if and only if G  is isomorphic to the complete graph 2K . 
 
Theorem 2.7. Let G be a connected graph with diameter 2. Then, 
 

1( ) ( 2).vCo PI G mM     

 
Proof. Let i je v v  be an arbitrary edge of G, such that it belongs to exactly ( )t e  triangles. 

Since ( ) 2diam G  , then we get ( ) deg( ) ( )
iv in e v t e   and ( ) deg( ) ( )

jv jn e v t e   equalities. 

Therefore,  we obtain  
( ) ( ) deg( ) deg( ) .

i jv v i jn e n e v v    

Hence, we have 

 

 

( ) ( )

2

( )

2 2

( ) ( ) deg( ) deg( )

                                 deg( ) deg( )   (from C-S inequality)

                                 deg ( ) deg ( ) 2

i j
i j i j

i j

i j

v v i j
e v v E G e v v E G

i j
e v v E G

i j
e v v

n e n e v v

m v v

m v v m

   

 



  

 

  

 



( ) ( )

deg( )deg( ).
i j

i j
E G e v v E G

v v
  
 

     (4) 

Using above inequality, we have 
2 2 2

1
( ) ( )

deg ( ) deg ( ) deg( ) deg ( ) ( ).
i j i

i j i İ
e v v E G v V G

v v v v M G
  

                          (5) 

Combining inequalities (1), (4) and (5), we complete the proof. 
 
Now we present a result for the Co-PI index of trees. 

 

Corollary 2.1. Let T be a tree with n vertices. Then, 
2( 2) ( ) ( 1)( 2).vn Co PI T n n       

Lower bound holds if and only if T is isomorphic to 2K  and upper bound holds if and only 

if T is isomorphic to .nS  
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Proof. Lower Bound: 

Since T is a tree, there are at least two pendant vertex. Let u be a pendant vertex and u is 
adjacent with 1.u  Since u is a pendant vertex, then ( ) 1un e   and 

1
( ) 1.un e n   From these 

equalities, we have 
1
( ) ( ) 2u un e n e n   . Now let v be other pendant vertex and v is 

adjacent with 1.v  Since v is a pendant vertex, then ( ) 1vn e   and 
1
( ) 1.vn e n   From this, 

we also have 
1
( ) ( ) 2v vn e n e n   . From definition of the Co-PI index, we get 

( )
( ) ( ) 2( 2).u v

e uv E T
n e n e n

 

    

The equality holds if and only if ( ) ( ) 1u vn e n e n    if and only if T is isomorphic to the 

complete graph 2K . 
Upper Bound:  

Since T is a tree with n vertices, then T has 1n edges. By (1), we have  

( ) ( )
( ) ( ) ( 2) ( 1)( 2).u v

e uv E T e uv E T
n e n e n n n

   

        

The equality holds if and only if for all edges, ( ) ( ) 2u vn e n e n    if and only if T is 

isomorphic to the star graph .nS  
 
Remark 2.1. If we consider definition of the Co-PI index, we can give a different 
presentation of it as in the following  
 

 
( )

0

( ) ( ) ( )

                   ( ) : ( )  and ( )  .

v u v
e uv E G

u v
i n

Co PI G n e n e

uv E G n e i n e i
 

 

  

   




 

Using this equality we obtained in above conjecture for the Co-PI index. We can not proof 
it, but we think that this result is one of the best results. 
 
Conjecture 2.1. Let G be a connected graph with n vertices and m edges. Then,  

 
0( ) ( )

( )

( ) min ( ), ( ) .
u
v

v u vi me uv E G n e i
n e i

Co PI G n e n e
 

  


    

Now, we compare the results for two different graphs in the following example. 
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Example 2.1.  Let 1 1 1( , )G V E be a graph with vertex set  1 1 2 3 4, , ,V v v v v  and  edge set 

 1 1 2 2 3 2 4 3 4, , ,E v v v v v v v v  and 2 2 2( , )G V E  be a graph with vertex set 

 2 1 2 3 4 5, , , ,V u u u u u  and  edge set  2 1 2 1 4 2 3 2 5 4 5, , , , .E v v v v v v v v v v  Then,  

 

Table 1. The Values of CoPIv(G1) and CoPIv(G2). 

 Th 2.1 Th 2.2 Th 2.3 Th 2.6 Th 2.7 Conj 2.1 
1( ) 4vCo PI G   8 9,79 8,48 6,11 8,48 4 

2( ) 7vCo PI G   15 12,04 14,45 11,83 - 11 
 
 

3. BOUNDS FOR THE LARGEST CO-PI EIGENVALUE OF G 

The resistance distance is a metric function on a graph, proposed by Klein and Randić[21]. 
The resistance distance ijR  between the vertices iv  and jv  of a connected graph G is 

defined to be equal to the resistance between the respective two nodes of an electrical 
network, corresponding to G, in which the resistance between any two adjacent nodes is 1 
Ohm. Maden et al. [16] proposed some results for the maximum eigenvalue of the 
resistance-distance matrix.  

Now we present some inequalities for the largest Co-PI eigenvalue of G. The 
following lemma is one of the key point in our considerations. 
 
Lemma 3.1 (B. Zhou [17,18]) Let  ijB B  be an n n  nonnegative, irreducible, 

symmetric matrix ( 2)n  with row sums 1 2, ,..., .nB B B  If 1( )B is the maximum eigenvalue 
of B , then  

2

1
1 1 1
( ) max

i

n

n
ji

ijj n i i

B B
B B

n B


 


 


  

with equality holding if and only if  1 2 ... nB B B    or if there is a permutation matrix Q 
such that  

0
0

t
t

C
Q BQ

C
 

  
 

 

where all the row sums of C are equal. 
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Theorem 3.1. Let G be a connected graph with 2n  . Then, 

1

2

*1

1 1
( ) max

CPIi
j

ij

i

n

n
CPIi

CPIj n i CPI

M M
G M

n M


  

 


                                            (6) 

where  
iCPIM  is the sum of i-th row of the matrix CPIM . Moreover equality holds if and 

only if  
1 2

...
nCPI CPI CPIM M M   . 

 
Proof. It is clear that the matrix CPIM  is irreducible for 2n  , and then, by Lemma 3.1 , 

we obtain the inequality in (6). By definition, we know that 0CPIM   for i j  and 

0CPIM   otherwise. We note that for 2n   there is no permutation matrix Q such that  

0
0

t
CPI t

C
Q M Q

C
 

  
 

 

where all the row sums of C are equal. By Lemma 3.1, the equality in  (6) holds if and only 
if  

1 2
...

nCPI CPI CPIM M M   . 

 
Corollary 3.1. Let G be a connected graph with 2n  . Then, 

1

* 2 ( )( ) vCo PI GG
n




                                                    (7) 

with equality holding if and only if  
1 2

...
nCPI CPI CPIM M M   . 

 
Proof. By the left part of the inequality given in (7) view of the C-S inequality, we obtain 

1

2

* 1 1 2 ( )( )
CPI ii

n n

CPI
i i v

M M
Co PI GG

n n n
   

  
 

 

and equality holds if and only if 
1 2

...
nCPI CPI CPIM M M   . 

Note that   0CPItrace M   and denote by ( )N N G the trace of 2
CPI

M . Therefore, 

for 1, 2,..., ,i n  the eigenvalues *( )i G of CPIM  satisfy the relations  

*

1
( ) 0

i

n

i
G



                                                                     (8) 

*2

1
( ) ( )

n

i
i

G N G


                                                                    (9) 
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Let   be the class of connected graphs whose Co-PI matrices have exactly one 
positive eigenvalue. In the following, we give upper and lower bounds for *

1 ( )G of graphs 
in the class   in terms of the number of vertices and ( )N G . 
 
Theorem 3.2. Let G  with 2n   vertices. Then,  

*
1

1( ) ( ).nG N G
n

 
  

Proof. By (8), we have 
1

* *

2
( ) ( ).

i

n

i
G G 



   Further, by the C-S inequality and using (9) 

2
*2 * *2
1

2 2

*2
1

( ) ( ) ( 1) ( )

                                   ( 1) ( ) ( ) .

n n

i i
i i

G G n G

n N G G

  


 

 
   
 

    

    

This implies the proof of Theorem 3.2. 
 
Theorem 3.3. Let Gwith 2n  vertices. Then, 

*
1

( )( ) .
2

N GG                                                              (10) 

Proof. We first note that *
1 ( ) 0G   and *

2 ( ) 0G  .  Then by (9) 

1

* *

1
2 ( ) ( ) .

i

n

i
G G 



  

From (8) and (9) we also have  

* * * *

1 1

( ) ( ) ( ) ( )

( )                              
2

i j i j
i j n i j n

G G G G

N G

   
     





 
 

and so  
 
 
 
 
 
 
from which (10) follows. 

 
 

1

2
*2 *

1

*2 * *

1

4 ( ) ( )

             ( ) 2 ( ) ( ) 2 ( )

i

i i j

n

i

n

i i j

G G

G G G N G

 

  



 

    

  



 
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4. NORDHAUS-GADDUM TYPE BOUNDS FOR THE LARGEST CO-PI 
EIGENVALUE OF G 

 

In this section, we present Nordhous-Gaddum type inequalities for the largest Co-PI 
eigenvalue of G. Before that, consider a connected graph G and its complement G . Let G 
be a connected graph on 2n  vertices, m edges. Further, assume that G has a 
connected complement G  with m edges. As one can easily prove, the following equality: 

2( ) ( 1).m m n n    
 
Theorem 4.1 (Su et al. [15]) Let G be connected graph with order 3n  , size m. Then,  

*2 *2 *2 2
1 22 ( ) ( ) ... ( ) 2 ( 2) .nm G G G m n         

 
In view of the Theorem 4.1, Theorem 3.2 and Theorem 3.3, we arrive at the 

following results, which will be presented without proof. 
 
Theorem 4.2. Let Gwith 2n    vertices, and let G  be connected. Then, 

* * 2 2
1 1

1( ) ( ) 2 ( 2) ( ( 1) 2 )( 2) .nG G m n n n m n
n

             

 
Theorem 4.3. Let Gwith 2n    vertices, and let G  be connected. Then, 

* *
1 1

( ( 1) 2 )( ) ( ) .
2

n n mG G m   
    
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