
Iranian J. Math. Chem. 9 (4) December (2018) 263 − 277 

 
 
 

On ev−Degree and ve−Degree Topological Indices  
 
B. ŞAHIN1,AND S. EDIZ2 

1Faculty of Science, Selçuk University, Konya, Turkey 
2Faculty of Education, Yuzuncu Yil University, Van, Turkey 
 
ARTICLE INFO  ABSTRACT 
Article History: 
Received  10 January 2017 
Accepted  25 March 2017 
Published online 31 December 2018 
Academic Editor: Tomislav Došlić 

Recently two new degree concepts have been defined in graph 
theory: ev-degree and ve-degree. Also the ev-degree and ve-degree 
Zagreb and Randić indices have been defined very recently as 
parallel of the classical definitions of Zagreb and Randić indices. It 
was shown that ev-degree and ve-degree topological indices can be 
used as possible tools in QSPR researches [2]. In this paper, we 
define the ve-degree and ev-degree Narumi–Katayama indices, 
investigate the predicting power of these novel indices and extremal 
graphs with respect to these novel topological indices. Also we give 
some basic mathematical properties of ev-degree and ve-degree 
Narumi-Katayama and Zagreb indices. 
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1. INTRODUCTION  

Topological indices have important place in theoretical chemistry. Many topological 
indices were defined by using vertex degree concept. The Zagreb and Randić indices are 
the most used degree based topological indices so far in mathematical and chemical 
literature among the all topological indices. Very recently, Chellali, Haynes, Hedetniemi 
and Lewishave published a seminal study: On ve-degrees and ev-degrees in graphs [1]. The 
authors defined two novel degree concepts in graph theory; ev-degrees and ve-degrees and 
investigate some basic mathematical properties of both novel graph invariants with regard 
to graph regularity and irregularity [1]. After given the equality of the total ev-degree and 
total ve-degree for any graph, also the total ev-degree and the total ve-degree were stated as 
in relation to the first Zagreb index. It was proposed in the article that the chemical 
applicability of the total ev-degree (and the total ve-degree) could be an interesting problem 
in view of chemistry and chemical graph theory.  In the light of this suggestion, one of the 
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present author has carried these novel degree concepts to chemical graph theory by 
defining the ev-degree and ve-degree Zagreb and Randić indices [2]. It was compared these 
new group ev-degree and ve-degree indices with the other well-known and most used 
topological indices in literature such as; Wiener, Zagreb and Randić indices by modeling 
some physicochemical properties of octane isomers [2]. It was shown that the ev-degree 
Zagreb index, the ve-degree Zagreb and the ve-degree Randić indices give better correlation 
than Wiener, Zagreb and Randić indices to predict the some specific physicochemical 
properties of octanes [2]. Also it was given the relations between the second Zagreb index 
and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree 
and ve-degree Zagreb indices [2]. In this paper we define the ve-degree and ev-degree 
Narumi–Katayama indices, investigate the predicting power of these novel indices and 
extremal graphs with respect to these topological indices. Also we give some basic 
mathematical properties of ev-degree and ve-degree Zagreb indices.  

A graph ܩ =  ܸ consists of two nonempty sets ܸ and 2-element subsets of (ܧ,ܸ)
namely ܧ. The elements of ܸ are called vertices and the elements of ܧ are called edges. For 
a vertex ݒ, deg (ݒ) show the number of edges that incident to ݒ. The set of all vertices 
which adjacent to ݒ  is called the open neighborhood of ݒ and denoted by ܰ(ݒ).  If we add 
the vertex ݒ to ܰ(ݒ), then we get the closed neighborhood of [ݒ]ܰ ,ݒ.  

The first and second Zagreb indices [3] defined as follows: The first Zagreb index 
of a connected graph ܩ, defined as, 

ଵܯ  = (ܩ)ଵܯ = ∑ deg (ݑ)ଶ௨∈௏(ீ) = ∑ (deg(ݑ) + deg(ݒ)).௨௩∈ா(ீ)  
and the second Zagreb index of a connected graph ܩ, defined as 

ଶܯ  = (ܩ)ଶܯ = ∑ deg(ݑ) . deg(ݒ).௨௩∈ா(ீ)  
The authors investigated the relationship between the total π-electron energy on molecules 
and Zagreb indices [3]. For the details see the references [4−6]. Randić investigated the 
measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons 
via Randić index [7]. The Randić index of a connected graph G defined as; 

 ܴ = (ܩ)ܴ = ∑ (deg(ݑ) . deg(ݒ))ିଵ ଶ⁄
௨௩∈ா(ீ) . 

We refer the interested reader to [8−10] and the references therein for the up to date 
arguments about the Randić index.   

The forgotten topological index for a connected graph G is defined as, 
ܨ  = (ܩ)ܨ = ∑ deg (ݑ)ଷ௨∈௏(ீ) = ∑ (deg(u)ଶ + deg(ݒ)ଶ)௨௩∈ா(ீ) . 

It was showed in [11] that the predictive power of the forgotten topological index is 
very close to the first Zagreb index for the entropy and eccentric factor. For further studies 
about the forgotten topological index we refer to the interested reader [11−13] and 
references therein. 

In the 1980s, Narumi and Katayama considered the production of the degrees of 
vertices 
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ܭܰ  = (ܩ)ܭܰ = ∏ deg (ݒ)௩∈௏(ீ)  
and named it the “simple topological index’’ [14]. Later for this graph invariant, the name 
‘‘Narumi-Katayama index’’ was used in [15−17]. The extremal graphs with respect to ܰܭ 
index was studied by Gutman and Ghorbani [15], Zolfi and Ashrafi [20]. Some relations 
between the Narumi-Katayama index and the first Zagreb index were introduced in the 
more recent paper [21]. 

Multiplicative version of the first Zagreb index of a connected graph was defined by 
Eliasi et. al. in [22] as: 

 Πଵ
∗ = Πଵ

(ܩ)∗ = ∏ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) . 
For detailed discussions of the multiplicative version of Zagreb indices, we refer the 
interested reader to [23] and the references cited therein. 

 In the following section, we will give basic definitions of ev-degree and ve-degree 
concepts, ve-degree and ev-degree Zagreb indices and as well as the basic mathematical 
properties of these novel topological indices. And also we give the definitions of ev-degree 
and ve-degree Narumi-Katayama indices. 

 
2. VE-DEGREE AND EV-DEGREE CONCEPTS AND CORRESPONDING 

TOPOLOGICAL INDICES 
 
In this section we give the definitions of ev-degree and ve-degree concepts which were 
given by Chellali et al. in [1] and the definitions and properties of ev-degree and ve-degree 
topological indices.  
 
Definition 2.1 [1] Let ܩ be a connected graph and ݒ ∈  ,ݒThe ve-degree of the vertex .(ܩ)ܸ
݀݁݃௩௘(ݒ), equals the number of different edges that incident to any vertex from the closed 
neighborhood of ݒ. For convenience we prefer to show the ve-degree of the vertex ݒ, by ܿ௩. 
 
Definition 2.2 [1] Let ܩ be a connected graph and ݁ = ݒݑ ∈  The ev-degree of the .(ܩ)ܧ
edge݁, ݀݁݃௘௩(݁), equals the number of vertices of the union of the closed neighborhoods of 
݁ For convenience we prefer to show the ev-degree of the edge  .ݒandݑ =   .by ܿ௘ or ܿ௨௩ ,ݒݑ
 
Definition 2.3 [1] Let ܩ be a connected graph and ݒ ∈  The total ev-degree of the .(ܩ)ܸ
graph ܩ is defined as ௘ܶ = ௘ܶ(ܩ) = ∑ ܿ௘௘∈ா(ீ)  and the total ve-degree of the graph ܩ is 
defined as ௩ܶ = ௩ܶ(ܩ) = ∑ ܿ௩௩∈௏(ீ) . 
 
Observation 2.4 [1] For any connected graph ܩ, ௘ܶ(ܩ) = ௩ܶ(ܩ). 
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Observation 2.5 [1] For any triangle free connected graph ܩ, ܿ௘ = ܿ௨௩ = deg(ݑ) +
deg(v) . 
 

The following theorem states the relationship between the first Zagreb index and the 
total ve-degree of a connected graph ܩ.  

 
Theorem 2.6 [1] For any connected graph ܩ, ௘ܶ(ܩ) = ௩ܶ(ܩ) = −(ܩ)ଵܯ  where ,(ܩ)3݊
  .ܩ denotes the total number of triangles in (ܩ)݊
 

In [1], the authors suggested the idea that to carry these novel degree concepts to 
mathematical chemistry. One of the present author following this suggestion defined ev-
degree and ve-degree Zagreb indices and showed that these novel group Zagreb and Randić 
indices give better correlation than well-known topological indices such as; Wiener, Zagreb 
and Randić indices to modeling some physicochemical properties of octane isomers [2]. 
And now, we give the definitions and some basic mathematical properties of ev-degree and 
ve-degree Zagreb indices which were given in [2]. 

 
Definition 2.7 [2] Let ܩ be a connected graph and ݁ ∈  The ev-degree Zagreb index .(ܩ)ܧ
of the graph ܩ is defined as ܵ = (ܩ)ܵ = ∑ cୣଶ௘∈ா(ீ) . 
 
Definition 2.8 [2] Let ܩ be a connected graph and ݒ ∈  The first ve-degree Zagreb .(ܩ)ܸ
alpha index of the graph ܩ is defined as ܵఈ = ܵఈ(ܩ) = ∑ c୴ଶ௩∈௏(ீ) . 
 
Definition 2.9 [2] Let ܩ be a connected graph and ݒݑ ∈  The first ve-degree Zagreb .(ܩ)ܧ
beta index of the graph ܩ is defined as ܵఉ = ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ) . 
 
Definition 2.10 [2] Let ܩ be a connected graph and ݒݑ ∈  The second ve-degree .(ܩ)ܧ
Zagreb index of the graph ܩ is defined as ܵఓ = ܵఓ(ܩ) = ∑ ܿ௨ܿ௩௨௩∈ா(ீ) . 
 
Definition 2.11 [2] Let ܩ be a connected graph and ݒݑ ∈  The ve-degree Randić .(ܩ)ܧ
index of the graph ܩ is defined as ܴఈ = ܴఈ(ܩ) = ∑ (ܿ௨ܿ௩)ିଵ ଶ⁄

௨௩∈ா(ீ) . 
 

And now we restate the some basic properties of ev-degree and ve-degree Zagreb 
indices which were given in [2]. 

 
Lemma 2.12 [2] Let T be a tree and ݒ ∈ ܸ(ܶ) then, ܿ௩ = ∑ deg (ݑ)௨∈ே(௩) . 
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Theorem 2.13 [2] Let T be a tree with the vertex set  ܸ(ܶ) = ,ଶݒ,ଵݒ} … (ܶ)௡} then, ܵఉݒ, =
 .(ܶ)ଶܯ2
 
Theorem 2.14 [2] Let G be a triangle free connected graph, then; ܵ(ܩ) = (ܩ)ܨ +
 .(ܩ)ଶܯ2
 
Corollary 2.15 Let T be a tree then, ܵ(ܶ) = (ܶ)ܨ + ܵఉ(ܶ). 
 

And now we give the definitions of ev-degree and ve-degree Narumi-Katayama 
indices for a graph G.  
 
Definition 2.16 The ݁ݒ-Narumi-Katayama index of a graph G is defined with the following 
equation ܰܭ௩௘ = (ܩ)௩௘ܭܰ = ∏ c୴௩∈௏(ீ) . 
 

If a graph has an isolated vertex, its ܰܭ௩௘ = 0 which is the minimal value of  ܰܭ௩௘ . 
We take the graphs without isolated vertices in the following results which will be 
introduced in the section four. 
 
Definition 2.17 The ݁ݒ-Narumi-Katayama index of a graph G is defined with the following 
equation ܰܭ௘௩ = (ܩ)௘௩ܭܰ = ∏ cୣ௘∈ா(ீ) . 
 

In the next section we investigate the predicting power of these novel topological 
indices and after that we investigate some mathematical properties of these novel indices. 
 
3. NEW TOOLS FOR QSPR RESEARCHES: THE EV−NARUMI−KATAYAMA 

INDEX AND THE VE−NARUMI−KATAYAMA INDEX 
 
In this section we compare the Narumi-Katayama index and its corresponding versions 
ofthe ev-Narumi-Katayama and ve-Narumi-Katayama indices with each other by using 
strong correlation coefficients acquired from the chemical graphs of octane isomers. We 
get the experimental results at the www.moleculardescriptors.eu (see Table 1). The 
following physicochemical features have been modeled: 
• Entropy, 
• Acentric factor (AcenFac), 
• Enthalpy of vaporization (HVAP), 
• Standard enthalpy of vaporization (DHVAP). 

We select those physicochemical properties of octane isomers for which give 
reasonably good correlations, i.e. the absolute value of correlation coefficients are larger 
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than 0.8959 (see Table 2). Also we find the Narumi-Katayama index of octane isomers 
values at thewww.moleculardescriptors.eu (see Table 3).  We also calculate and show the 
ev-Narumi-Katayama and the ve-Narumi-Katayama indices of octane isomers values in 
Table 3.   

Table 1. Some physicochemical properties of octane isomers. 

Molecule Entropy AcenFac HVAP DHVAP 
n-octane 111.70 0.39790 73.19 9.915 
2-methyl-heptane 109.80 0.37792 70.30 9.484 
3-methyl-heptane 111.30 0.37100 71.30 9.521 
4-methyl-heptane 109.30 0.37150 70.91 9.483 
3-ethyl-hexane 109.40 0.36247 71.70 9.476 
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915 
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272 
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029 
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051 
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973 
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316 
2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209 
3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081 
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826 
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402 
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897 
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014 
2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410 

 
Table 2. Topological indices of octane isomers. 

 
Molecule Nar evNar veNar 
n-octane 4.159 9.129 9.129 

2-methyl-heptane 3.871 9.640 9.757 
3-methyl-heptane 3.871 9.575 9.575 
4-methyl-heptane 3.871 9.575 9.510 

3-ethyl-hexane 3.871 9.510 9.352 
2,2-dimethyl-hexane 3.466 10.491 10.738 
2,3-dimethyl-hexane 3.584 10.045 10.098 
2,4-dimethyl-hexane 3.584 10.085 10.163 
2,5-dimethyl-hexane 3.584 10.150 10.386 
3,3-dimethyl-hexane 3.466 10.386 10.450 
3,4-dimethyl-hexane 3.584 9.980 9.940 

2-methyl-3-ethyl-pentane 3.584 9.980 9.911 
3-methyl-3-ethyl-pentane 3.466 10.281 10.240 
2,2,3-trimethyl-pentane 3.178 10.869 11.075 
2,2,4-trimethyl-pentane 3.178 11.002 11.298 
2,3,3-trimethyl-pentane 3.178 10.828 11.010 
2,3,4-trimethyl-pentane 3.296 10.515 10.658 

2,2,3,3-tetramethylbutane 2.773 11.736 12.210 
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Table 3.The correlation coefficients between new and old topological indices and some 

physicochemical properties of octane isomers. 

 
Index Entropy AcenFac HVAP DHVAP 

Nar 0.9398 0.9700 0.8959 0.9410 

ve-Nar -0.9192 -0.9092 -0.9236 -0.9490 

ev-Nar -0.9369 -0.9486 -0.9202 -0.9568 

 

Table 4. The squares of correlation coefficients between topological indices and some 

physicochemical properties of octane isomers. 

 
Index Entropy AcenFac HVAP DHVAP 

Nar 0.8832 0.9409 0.8026 0.8854 

ve-Nar 0.8449 0.8266 0.8530 0.9006 

ev-Nar 0.8778 0.8998 0.8468 0.9154 

 
Note that the all values in Table 2 are given by using natural logarithm. It can be 

seen from the Table 2 that the most convenient indices which are modeling the Entropy, 
Enthalpy of vaporization (HVAP), Standard enthalpy of vaporization (DHVAP) and 
Acentric factor (AcenFac) are Narumi-Katayama  index (S) for entropy and Acentric 
Factor, ve-Narumi-Katayama index for the Enthalpy of vaporization (HVAP) and  ev-
Narumi-Katayama index for the  Standard enthalpy of vaporization (DHVAP), 
respectively. But notice that the Narumi-Katayama index show the positive strong 
correlation and the ve-Narumi-Katayama  and theev-Narumi-Katayama indices show the 
negative strong correlation. Because of this fact we can compare these graph invariants 
with each other by using the squares of correlation coefficients for ensure the compliance 
between the positive and negative correlation coefficients (see Table 4).  

 The cross-correlation matrix of the indices are given in Table 5. 
 

Table 5. The cross-correlation matrix of the topological indices. 
 

Index Nar ve-Nar ev-Nar 
Nar 1.0000   

ve-Nar -0.9901 1.0000  
ev-Nar -0.9715 0.9931 1.0000 
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It can be shown from the Table 5 that the absolute value of the minimum correlation 
efficient among the indices is 0.9715 which is indicate strong correlation among all these 
indices. From the above arguments, we can say that the ve-Narumi-Katayama index and ev-
Narumi-Katayama index are possible tools for QSPR researches. 
 

4. MAIN RESULTS 

In this section, we firstly give some basic mathematical properties of ve-degree, ev-Narumi-
Katayama  and ve-Narumi-Katayama indices. Secondly, we investigate certain 
mathematical properties of ev-degree and ve-degree Zagreb indices. 
 
Lemma 4.1. Let G be a connected graph, then ∑ ݊௩ =௩∈௏(ீ) ∑ ݊௘ =௘∈ா(ீ)  where ,(ܩ)3݊
݊௩, ݊௘ , ݊(ܩ) denote the number of triangles in G containing the vertex v, the number of 
triangles in G containing the edge e and the total number of triangles in G, respectively. 
 
Proof. The second part of this equality were given in [1]. The first part comes from that 
since every triangle  consists of three vertices and edges, we count every triangle exactly 
three times for each vertex. Since the total number of triangles in the graph G will not be 
changed, the desired result acquired easily.                                                                           □ 
 
Lemma 4.2.  Let G be a connected graph and ݒ ∈ then ܿ௩ ,(ܩ)ܸ = ∑ deg (ݑ)௨∈ே(௩) − ݊௩ . 
 
Proof. From the Definition 2.1, we know that  ܿ௩ equals the number of different edges 
incident to any vertex of ܰ(ݒ). Therefore ܿ௩ = ∑ deg(ݑ)௨∈ே(௩)  if ݒ does not lie in a 
triangle. But if ݒ belongs a triangle then the edge that does not incident to ݒ of this triangle 
must be counted twice in the sum ∑ deg(ݑ)௨∈ே(௩) . Therefore we must minus  one  from the 
sum ∑ deg(ݑ)௨∈ே(௩)  for we find the exact number of different edges incident to ܰ(ݒ). Thus 
if ݒ lies in more than one triangle then we must minus ݊௩ from the the sum ∑ deg(ݑ)௨∈ே(௩)  
for we find the exact number of different edges incident to ܰ(ݒ).                                        □ 
 
Corollary 4.3. For the n-vertex triangle graph G, the ve-degree Narumi-Katayama index 
 :is calculated by the following equation (ܩ)௩௘ܭܰ

(ܩ)௩௘ܭܰ  = ∏ ൫∑ deg (ݑ)௨∈ே(௩) ൯௩∈௏ . 
 
Example 4.4. Consider the ଶܲ path graph ܿ௩భ = ܿ௩మ = 1 and ܰܭ௩௘( ଶܲ) = 1. For ଷܲ path 
graph ܿ௩భ = ܿ௩మ = ܿ௩య = 2 and ܰܭ௩௘( ଷܲ) = 8. For ସܲ, ܿ௩భ = ܿ௩ర = 2 and ܿ௩మ = ܿ௩య = 3 so 
that  ܰܭ௩௘( ସܲ) = 36. We take the  ௡ܲ such that ݊ ≥ 5.  ܿ௩భ = ܿ௩೙ = 2 and ܿ௩మ = ܿ௩೙షభ = 3 
and the ݁ݒ-degree of the other vertices are 4. Therefore ܰܭ௩௘( ௡ܲ) = 9.4௡ିଷ. 
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Example 4.5. Consider the ܥଷ cycle  ܿ௩భ = ܿ௩మ = ܿ௩య = 3  and ܰܭ௩௘(ܥଷ) = 27.  For ݊ ≥ 4 
every cycle  4௩௘-regular and ܰܭ௩௘(ܥ௡) = 4௡ . 
 
Example 4.6. Consider the ܵ௡-star graph on ݊ vertices. Every vertices have the same ݁ݒ-
degree such that (݊ − 1). This means ܰܭ௩௘(ܵ௡) = (݊ − 1)௡ . 
 
Example 4.7. Consider the ܭ௡-complete graph with ݊ vertices. ܭ௡ is a ݉௩௘-regular graph 
with the size ݉ = ݊(݊ − 1) 2⁄ . Therefore, ܰܭ௩௘(ܭ௡) = ݉௡ . 
 
Proposition 4.8. Let ܩ be a graph with ݊ vertices, then ܰܭ௩௘(ܩ) ≤  .(௡ܭ)௩௘ܭܰ
 
Proof. Note that contribution each edge is positive. Hence, ܰܭ௩௘(ܩ) reaches its maximum 
value for the complete graphs.                                                                                                □ 
 
Proposition 4.9. For the ௡ܲ-path graph with ݊ vertices such that ݊ ≥ )௩௘ܭܰ ,4 ௡ܲ) =
)௘௩ܭܰ ௡ܲ) = 9.4௡ିଷ. 
 
Proof.  We have already known that  ܰܭ௩௘( ௡ܲ) = 9.4௡ିଷ from the Example 4.4. There are 
݊ − 3  edges with their ev-degrees equal 4 and 2 edges with their ev-degrees equal 3 for the 
n-vertex path. Therefore, the proof is complete.                                                                    □ 
 
Proposition 4.10. For the  cycle ܥ௡ on ݊ vertices such that ݊ ≥ (௡ܥ)௩௘ܭܰ,4 =
(௡ܥ)௘௩ܭܰ = 4௡ . 
 
Proof. From the Example 4.5 we can directly write that ܰܭ௩௘(ܥ௡) = 4௡ . Clearly, from the 
definition of ev-degree, every edge of ܥ௡ is 4௘௩-regular. The proof comes from this fact.   □ 
 
Proposition 4.11. For  the ܵ௡-star graph with ݊ vertices such that  ݊ ≥ ௘௩(ܵ௡)ܭܰ ,4 =
݊௡ିଵ < ௩௘(ܵ௡)ܭܰ = (݊ − 1)௡ . 
 
Proof. We make the proof by induction on ݊. For  ݊ = ௘௩(ܵସ)ܭܰ ,4 = 4ଷ = 64 <
௩௘(ܵସ)ܭܰ = 3ସ = 81, as desired. We assume that the claim is true for ݊ = ݇ and we will 
show that it is true ݊ = ݇ + 1.  For ݊ = ݇, ݇௞ିଵ < (݇ − 1)௞ is equivalent to  

 ቀ1 + ଵ
௞ିଵ

ቁ
௞ିଵ

< ݇ − 1 

and for  ݊ = ݇ + 1, (݇ + 1)௞ < ݇௞ାଵ. Thus we want to show that 

 ቀ1 + ଵ
௞
ቁ
௞

< ݇.  ቀ1 + ଵ
௞
ቁ
௞

< ቀ1 + ଵ
௞ିଵ

ቁ
௞

= ቀ1 + ଵ
௞ିଵ

ቁ
௞ିଵ

ቀ1 + ଵ
௞ିଵ

ቁ < (݇ − 1) ௞
௞ିଵ

= ݇. 
So, the proof is complete.                                                                                                       □ 
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Theorem 4.12. (a) The ݊-vertex tree with maximal ܰܭ௩௘ is ܵ௡ such that  ܰܭ௩௘(ܵ௡) =
(݊ − 1)௡ . 
(b) The ݊-vertex unicyclic graph with the maximal ܰܭ௩௘ is ܵ௡ + ݁ (depicted in Figure 1) 
such that ܰܭ௩௘(ܵ௡ + ݁) = ݊ଷ(݊ − 1)௡ିଷ. 
(c) The ݊-vertex bicyclic graph with the maximal  ܰܭ௩௘  is ܼ௡ (depicted in Figure 1) such 
that ܰܭ௩௘(ܼ௡) = (݊ + 1)ସ(݊ − 1)௡ିସ. 
 

 

 
S୬ + e 

 
Figure 1. The graphs  ܵ௡ + ݁ and ܼ௡. 

 
Theorem 4.13. (a) The ݊-vertex tree with minimal ܰܭ௩௘ is ௡ܲ(݊ ≥ 4) such that 
)௩௘ܭܰ ௡ܲ) = 9.4௡ିଷ. 
(b) The ݊-vertex unicyclic graph with the minimal  ܰܭ௩௘  is ܴ௡ (depicted in Figure 2) such 
that ܰܭ௩௘(ܴ௡) = 2.3.5ଶ.4௡ିସ. 
 (c) The ݊-vertex bicyclic graph with the minimal  ܰܭ௩௘ is ௡ܶ (depicted in Figure 2) such 
that ܰܭ௩௘( ௡ܶ) = 5ସ.4௡ିସ. 

 
Figure 2. Graphs which are used for Theorem 2. 

 
Theorem 4. 14. (a) The ݊-vertex tree with second maximal  ܰܭ௩௘ is ܺ௡ (depicted in Figure 
3)  such that ܰܭ௩௘(ܺ௡) = 2(݊ − 1)ଶ(݊ − 2)௡ିଷ. 
(b) The ݊-vertex unicyclic graph with second maximal  ܰܭ௩௘ is ܵ௡ + ݁ + ݁ᇱ (depicted in 
Figure 4)  such that ܰܭ௩௘(ܵ௡ + ݁ + ݁ᇱ) = 4.݊ଷ(݊ − 2)௡ିସ. 
(c) The ݊-vertex bicyclic graph with second maximal  ܰܭ௩௘ is ܮ௡ (depicted in Figure 3 ) 
such that ܰܭ௩௘(ܮ௡) = 5.(݊ + 1)ଶ݊ଶ(݊ − 2)௡ିହ. 
 
Theorem 4.15. (a) The ݊-vertex tree with second minimal  ܰܭ௩௘  is the ܳ-graph (depicted 
in Figure 5)  such that ܰܭ௩௘(ܳ) = 2ଶ.3ଷ.5ଷ.4௡ି଼. 
(b) The ݊-vertex unicyclic graph with second minimal  ܰܭ௩௘ is the ܴ-graph (depicted in 
Figure 6)  such that ܰܭ௩௘(ܴ) = 2.32.55.4௡-8. 
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(c) The ݊-vertex bicyclic graph with second minimal  ܰܭ௩௘  is the ܵ-graph (depicted in 
Figure 7 ) such that ܰܭ௩௘(ܵ) = 3.57.4௡-8. 
 

 
Figure 3. The graph ܺ௡ and ܮ௡ . 

 

 
 

Figure 4. The graph ܵ௡ + ݁ + ݁ᇱ. 
 

 
Figure 5. The graph ܳ. 

 

 
Figure 6. The graph ܴ. 

 

 
Figure 7. The graph ܵ. 

 
Corollary 4.16. For any triangle-free graph G, ܰܭ௘௩(ܩ) = ∏ ∗(ܩ)

ଵ . 
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Proof. The proof directly comes from the Observation 2.5, the Definition 2.17 and the 
definition of multiplicative version of the first Zagreb index.                                               □ 
 

Now, we give some mathematical properties of  ev-degree and ve-degree Zagreb 
indices in terms of the forgotten topological index and the total number of the triangles 
n(G) of a connected graph G. Before giving propositions, we give following terminologies 
which be used. 
 
Theorem 4.17. Let G be a connected graph, then 

(ܩ)ܵ  = (ܩ)ܨ + −(ܩ)ଶܯ2 2∑ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) ݊௘ + ∑ ݊௘ଶ௘ୀ௨௩∈ா(ீ) . 
 
Proof. We know that ܿ௘ୀ௨௩ = deg(ݑ) + deg(v) − nୣ and ܵ = (ܩ)ܵ = ∑ cୣଶ௘∈ா(ீ) . 
Therefore, 
 
        ܵ = (ܩ)ܵ = ∑ cୣଶ௘ୀ௨௩∈ா(ீ) = (deg(ݑ) + deg(v) − nୣ)ଶ 
           = ∑ (deg(ݑ) + deg(v))ଶ − 2∑ (deg(ݑ) + deg(ݒ))௘ୀ௨௩∈ா(ீ) ݊௘௘ୀ௨௩∈ா(ீ)  
           +∑ ݊௘ଶ௘ୀ௨௩∈ா(ீ)  
           = ∑ (deg (ݑ)ଶ + deg (ݒ)ଶ) + 2∑ deg(ݑ) deg(ݒ)௘ୀ௨௩∈ா(ீ)௘ୀ௨௩∈ா(ீ)  
           −2∑ (deg(ݑ) + deg(ݒ))௘ୀ௨௩∈ா(ீ) ݊௘ + ∑ ݊௘ଶ௘ୀ௨௩∈ா(ீ)  
           = (ܩ)ܨ + −(ܩ)ଶܯ2 2∑ (deg(ݑ) + deg(ݒ))௨௩∈ா(ீ) ݊௘ + ∑ ݊௘ଶ௘ୀ௨௩∈ா(ீ) . 

□ 
 
Theorem 4.18. Let G be a connected graph, then ܵఉ(ܩ) = −(ܩ)ଶܯ2  (ܩ)݊ where ,(ܩ)6݊
denotes the total number of triangles in G. 
 
Proof.  From the definition of the first ve-degree Zagreb beta index and Lemma 4.2 we get  

 ܵఉ(ܩ) = ∑ (ܿ௨ + ܿ௩)௨௩∈ா(ீ)  
             = ∑ ൣ൫∑ deg(ݓ) − ݊௨௪∈ே(௨) ൯ + ൫∑ deg(ݓ) − ݊௩௪∈ே(௩) ൯൧௨௩∈ா(ீ)  
             =  ∑ ൫∑ (ݓ)݃݁݀ +௪∈ே(௨) ∑ ௪∈ே(௩)(ݓ)݃݁݀ ൯௨௩∈ா(ீ) − ∑ (݊௨ + ݊௩௨௩∈ா(ீ) )   
             = ܵఉ(ܩ) = −(ܩ)ଶܯ2   .(ܩ)6݊

□ 
 

Theorem 4.19.  Let G be a connected graph, then 
 ܵఈ(ܩ) = −(ܩ)ܨ 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈௏(ீ) + ∑ ݊௩ଶ௩∈௏(ீ)  

where ݊௩ denotes the number of triangles in G containing the vertex v.  
 
Proof. From the definition of the first ve-degree Zagreb alpha index and Lemma 4.2 we get 
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       ܵఈ(ܩ) = ∑ c୴ଶ௩∈௏(ீ) = ∑ ∑ (deg(ݑ) − ݊௩)ଶ௨∈ே(௩)௩∈௏(ீ)  

                   = ∑ ቂ൫∑ deg (ݑ)௨∈ே(௩) ൯ଶ − 2∑ deg (ݑ)݊௩௨∈ே(௩) + ݊௩ଶቃ௩∈௏(ீ)  

                   = ∑ ൫∑ deg (ݑ)௨∈ே(௩) ൯ଶ − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈௏(ீ)௩∈௏(ீ) + ∑ ݊௩ଶ௩∈௏(ீ)  
                   = ∑ deg (ݒ)ଷ௩∈௏(ீ) − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈௏(ீ) + ∑ ݊௩ଶ௩∈௏(ீ)  
                   = (ܩ)ܨ − 2∑ ൫∑ deg (ݑ)݊௩௨∈ே(௩) ൯௩∈௏(ீ) + ∑ ݊௩ଶ௩∈௏(ீ) . 

□ 
 

It is very surprisingly to see that for any triangle free graph the forgotten topological 
index and the first ve-degree Zagreb alpha index equal each other. The following corollary 
states this fact. 
 
Corollary 4.20.  Let G be a triangle-free connected graph, then ܵఈ(ܩ) =  .(ܩ)ܨ
 
5. CONCLUSION 

In this study we defined ev-degree and ve-degree Narumi-Katayama indices and showed 
that these novel degree based topological indices can be used possible tools for QSPR 
researches. Also we investigated some basic mathematical properties of ev-degree and ve-
degree Narumi-Katayama and Zagreb indices. It can be interesting to compute the exact 
value of ev-degree and ve-degree topological indices for some graph operations. It can also 
be interesting to investigate the ev-degree and ve-degree concepts for the other topological 
indices for further studies. 
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