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ABSTRACT. In theoretical chemistry, molecular structure descriptors are used to compute 
properties of chemical compounds. Among them Wiener, Szeged and detour indices play 
significant roles in anticipating chemical phenomena. In the present paper, we study these 
topological indices with respect to their difference number.  
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1. INTRODUCTION  

A graph can be represented in an algebraic way, by considering a matrix named, adjacency 
matrix. This matrix is defined as A = [aij] where aij = 1, for an adjacent pair vi and vj and 0 
otherwise. Here V(G) = {v1,v2, …, vn} and E(G)={e1,e2,…,em} are the set of all vertices and 
edges of G, respectively. If G is given, then A is uniquely determined, and vice versa. The 
distance matrix D = [dij] can be defined for G with entries dii = 0 and dij, i≠j as the distance 
between vertices vi and vj, see [2,10]. The detour matrix can be defined similarly, with 
respect to the length of the longest path between vertices. For given vertices )(, GVyx  , 
d(x,y) and dd(x,y) denote to the lengths of shortest and longest paths between x and y, 
respectively. The distance and detour matrices were introduced for describing the 
connectivity in directed graphs. The Wiener and detour indices are defined as follows, 
respectively: 

, ( ) , ( )

1 1( ) ( , ) ( ) ( , ).
2 2u v V G u v V G

W G d u v and DD G dd u v
 

    

These graph invariant are studied by several authors in recent years [1,35,1116,1923]. Let 
D(u) = ∑xV(G)d(u,x) and DD(u) = ∑xV(G)d(u,x). It is clear that 
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( ) ( )

1 1( ) ( ) ( ) ( ).
2 2u V G u V G

W G D u and DD G DD u
 

    

For ( ),e uv E G   let n(u|G) and n(v|G) be respectively the number of vertices of G lying 
closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v  
than to vertex u. The Szeged index of the graph G is defined as [79,12] 

( )

( ) ( | ) ( | ).
e E G

Sz G n u G n v G


   

A wellknown result of Klavžar et al. states that η(G) ≥ 0, and by a result of Dobrynin and 
Gutman η(G) = 0 if and only if each block of G is complete.  

NadjafiArani et al. in [17,18] determined connected graphs whose difference 
between Szeged and Wiener numbers are n, for n = 4, 5. Following their work, Ghorbani et 
al. in [6] proved that for any integer n≠1,2,4,6 there is a graph G with μ(G)=n, where 
μ(G)=DD(G)–W(G). In other words, they proved the following theorem. 
 
Theorem 1. For any integer n ≥ 7, there is a graph G where μ(G) = n. 

They also showed that for a given integer n, a graph G with μ(G) = n can’t be 
determined uniquely. The main goal of this paper is to compute the relation between above 
topological indices. 
 

2. MAIN RESULTS AND DISCUSSIONS 
The symmetries of objects can be interpreted by means of group action. Let G be a group 
and X a nonempty set. An action of G on X is denoted by (G | X) and X is called a G-set. It 
induces a group homomorphism from G into the symmetric group SX on X, where gx = xg 
for all xX. The orbit of x will be indicated as xG and defines as the set of all xg, gG. 

A bijection σ on the vertices of graph G is called an automorphism if for edge e = uv 
then σ(e) = σ(u)σ(v) is an edge of E. Let Aut(G) = {α: V→V, α is bijection}, then Aut(G) 
under the composition of mappings forms a group. We say Aut(G) acts transitively on V if 
for any vertices u and v in V there is ( )α Aut G  such that ( )α u v . Similarly, the edge 
transitive graph can be defined. 

 
Lemma 2. Suppose G is a graph, A1, A2, ….,At are the orbits of Aut(G) under its natural 
action on V(G) and , ix y A , 1 i t  . Then D(x)=D(y) and DD(x)=DD(y). In particular, if 
G is vertex-transitive then for every pair (u,v) of vertices D(u) = D(v) and DD(u)=DD(v). 
 
Proof. It is easy to see that if vertices u and v are in the same orbit, then there is an 
automorphism φ  such that ( ) .φ u v  Thus 

( ) ( ) ( )

( ) ( ) ( )

( ) ( , ) ( ( ), ( )) ( , ) ( ),

( ) ( , ) ( ( ), ( )) ( , ) ( ).
y V G w V G w V G

y V G w V G w V G

D v d v y d φ u φ w d u w D u

DD v dd v y dd φ u φ w dd u w DD u
  

  

     

     
 

 If G be a vertex-transitive graph then D(u) = D(v) and DD(u)=DD(v), )(, GVvu  . 
This completes the proof. 
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Theorem 3. If G is vertex-transitive, then for every vertex u in G we have 

| | | |( ) ( ) ( ) ( ).
2 2
V VW G D u and DD G DD u   

Proof. By using Lemma 2, one can verify that 

, ( ) ( ) ( ) ( )
1 1 1 | |( ) ( , ) ( , ) ( ) ( ).
2 2 2 2x y V G x V G y V G x V G

VW G d x y d x y D y D y           

 

Similarly the second part can be resulted from Lemma 2. 

 
Lemma 4. Suppose G is a graph, E1, E2, ….,Et are the orbits of Aut(G) under its natural 
action on E(G) and ie uv E  , 1 i t  . Then ( | ) ( | ).n u G n v G  In particular, if G is 
edge-transitive then for every edge e=uv, ( | ) ( | ).n u G n v G  
 
Theorem 5. If G is edge-transitive then for every edge e=uv, we have 

).|()|(||)( GvnGunEGSz   
 
Proof. Apply Lemma 4. 
 

Suppose now ( ) ( ) ( )η G Sz G W G   and ( ) ( ) ( )G DD G Sz G κ , then  
( ) ( ) ( ).κ G μ G η G   

 
Example 1. Consider the square H depicted in Figure 1. It is well-known fact that H is both 
vertex and edge-transitive. The distance and detour matrices of H are as follows: 
 

D(G) v1 v2 v3 v4  DD(G) v1 v2 v3 v4 
v1 0 1 2 1  v1 0 3 2 3 
v2 1 0 1 2  v2 3 0 3 2 
v3 2 1 0 1  v3 2 3 0 3 
v4 1 2 1 0  v4 3 2 3 0 

 
Hence, by Theorems 3,5 one can deduce that  

4 4( ) 4 8, ( ) 8 16, ( ) 4 4 16 ( ) 8.
2 2

W H DD G Sz G and μ H         
 

 
In general, for a cycle on n vertices, we have the following theorem. 
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v1

v3 v4

v2

 
Figure 1. A labeled square. 

 
Theorem 6. For the cycle Cn on n vertices, we have 

2

2

( 4) 2 |
8

( ) .
( 1) 2 |

8

n

n n n
κ C

n n n

 

 
 



 

Proof. Since Cn is both vertex and edge-transitive, by a direct computation, we have 
 n is even, DD(u)=2(n-1)+2(n-2)+…+1(n-n/2) = (5n2-4n)/4. 
 n is odd, DD(u)=2(n-1)+2(n-2)+…+2(n-1)/2 = (5n2-7n)/4. 

 
Hence, by using Theorems 3,5 one can prove that for any vertex u of Cn, 

2 3

2 2

(3 4) 2 | 2 |
8 4

( ) , ( ) .
(3 4 1) ( 1)2 | 2 |

8 4

n n

n n nn n
DD C Sz C

n n n n nn n

 
 
   
   

  

 

This completes the proof. 
 
Theorem 7. Suppose G is both vertex and edge-transitive r-regular graph, then  

)].|()|()([
2

||)()( GvnGunruDDVGSzGDD   

Proof. According to Theorems 3,5 for every edge e=uv we have 

)].|()|()([
2

||

)|()|(
2

||)(
2

||)|()|(||)(
2

||)()(

GvnGunruDDV

GvnGunVruDDVGvnGunEuDDVGSzGDD




 

It is clear that if T is a tree, then W(T)=DD(T)=Sz(T) and so 0)( G . Further, 
( ) ( )κ G μ G  if and only if all blocks of G are complete. In other words, if G is a graph 

whose blocks are complete, then ( ) {1,2,4,6}κ G  . Hence, it is natural to ask about values 
of ( )κ G ?  
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Let r, s ≥ 0, denoted by sr
nU ,  means a complete graph on n vertices with r and s 

pendent vertices added to a and b, respectively, see Figure 2. In the following, we 
determine this value for graph sr

nU , . 
v1

v2

vs

t1 t2

tr

a b

n
r,sU  

Figure 2. Graph sr
nU , . 

 
Theorem 8. 

3 2
, 23 6 6( ) ( ) 2 ( ) ( 3) 2.

2
s r
n

n n nκ U n s r r n s sn r n  
          

 
Proof. Let Q be the clique of G, by using group action, we have to consider five types of 
vertices: 

 Case 1, e=v1a by Figure 2, one can see that  
1( | ) ( | ) 1.n v G n a G n s r   

 There are s+r edges of this type and so the contribution of these edges is 
( )( 1).s r n s r      

 Case 2, e=ab by Figure 2, one can see that  
( | ) ( | ) ( 1)( 1).n a G n b G s r  

  Case 3, e=x1a where 1 .x Q  By Figure 2, one can see that  

1( | ) ( | ) 1.n x G n a G s 
 There are n-2 edges of this type and so the contribution of these edges is 

( 2)( 1).n s    
 Case 4, e=x1b where 1 .x Q  By Figure 2, one can see that  

1( | ) ( | ) 1.n x G n b G r 
 There are n-2 edges of this type and so the contribution of these edges is 

( 2)( 1).n r    
 Case 5, e=xixj where i≠j and ,i jx x Q . By Figure 2, one can see that  

( | ) ( | ) 1.i jn x G n x G 
 There are (n2)(n3)/2 edges of this type and so the contribution of these edges is 

(n2)(n3)/2. 
 
It follows that 
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2
, 2( 1)( ) ( )( 1) ( 1) ( 1) ( 1)

2
s r
n

n nDD U s r n n s s r r sr n
            

and 
, 3( ) ( 1)( ) ( 1)( 1) ( 2)( 1 ).

2
s r
n

nSZ U n r s s r s n r n r 
              

Thus, 

2)3()(2)(
2

663)()( 2
23

,, 


 nrsnsnrrsnnnnUSzUDD sr
n

rs
n  

and the proof is comple. 
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