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ABSTRACT. The center (periphery) of a graph is the set of vertices with minimum
(maximum) eccentricity. In this paper, the structure of centers and peripheries of some classes
of composite graphs are determined. The relations between eccentricity, radius and diameter
of such composite graphs are also investigated. As an application we determine the center and
periphery of some chemical graphs such as nanotorus and nanotubes covered by C,.
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1. INTRODUCTION

Graph operations play an important role in the study of graph decompositions into
isomorphic subgraphs. For more details about graph operations see [4] and [1]. Facility
location problems deal with the task of choosing a site subject to some criterion. Centrality
questions are now examined using graphs and distance concepts. Two concepts, center and
periphery is related to eccentricity in a graph. The center of some classes of graphs were
determined in [8], [5] and [11]. We are interested in finding the center and periphery of
some classes of composite graphs. Meanwhile the eccentricity of a vertex of composite
graphs which are interested for us, was computed in [3], for obtaining the eccentric
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connectivity index of these composite graphs. The paper is organized as follows. In the next
section the eccentricity, radius, diameter, center and periphery of a connected graph is
introduced and we recall some preliminaries about six classes of composite graphs. Section
3 contains the main results about the center and periphery of composite graphs in terms of
the radius and diameter of their components, respectively. As an application the center of
some chemical graphs are obtained. All graphs are considered in this paper will be finite,
simple and connected. The notation we use is mostly standard and taken from standard
graph theory textbooks, such as [9].

2. DEFINITIONS AND PRELIMINARIES

Let G be a graph with the vertex and edge sets V(G) and E(G) respectively. The distance
between a and b of V(G) is denoted by ds(a, b) and it is defined as the number of edges in a
shortest path connecting the vertices a and b. Let G be a connected graph and a be a vertex
of G. The eccentricity ¢ (a) is the distance to a vertex farthest from a. Thus

gs(@)=max{d;(a,b)|beV(G)}.

The radius r(G) is the minimum eccentricity of vertices, whereas the diameter d(G) is the
maximum eccentricity. Now a is a central vertex if ¢;(a) =r(G).The center of G, C(G) is

defined as

C(G) ={aeV(G)|ec(a) = r(G)}-
Thus, the center consists of all vertices having minimum eccentricity. The vertex a is a
peripheral vertex if ¢;(a)=d(G), and periphery is the set of all such vertices. The

periphery of G is denoted by P(G). It is defined as:

P(G)={aeV(G)|ec(a) =d(G)}.
Now we introduce the graph operations that we consider in this paper.

The Cartesian product GxH of graphs G and H has the vertex set V (GxH) =V (G)xV (H)
and (a, b)(c, d) is an edge of GxH if either (a = ¢ and bd e E(H)), or (ace E(G) and b = d). If

G1,Gy, ...,Gs are graphs then we denote G1xXG,X%...xGs by l_IGi LG =G =... =G =G,

i=1
we have the s-th Cartesian power of G and denote it by G°. The symmetric difference G @
H of two graphs G and H is the graph with vertex set V (G) x V (H), and (a, b)(c, d) is an
edge of G @ H whenever ac € E(G) or bd € E(H), but not both.
The disjunction G v H of two graphs G and H is the graph with vertex set V (G)xV
(H), and (a, b)(c, d) is an edge of G v H whenever ac € E(G) or bd € E(H).
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The join G + H of graphs G and H with disjoint vertex sets V (G) and V (H) and
edge sets E(G) and E(H) is the graph union G U H together with all the edges joining
vertices of V (G) and V (H).

Let G and H be two graphs. Their corona product GoH is defined as the graph
obtained by taking one copy of G and joining the i-th vertex of G to every vertex in i-th
copy of H. The vertex set of a corona product of two graphs is not the Cartesian product of
their vertex sets. However, each vertex b of a copy of H attached to a vertex a from G can
be uniquely described by the ordered pair (a, b). Hence the vertices in all copies of H can be
described as the elements of the Cartesian product V (G)xV (H). This description can be
extended to all vertices of GoH by introducing a special symbol ¢ so that V (GoH) = V
(G)x{V (H)x ¢}, where ordered pairs (a, ¢) denote the vertices of G.

The composition G[H] of two graphs G and H is the graph with vertex set V (G)xV
(H), and (a, b)(c, d) is an edge of G[H] whenever ac € E(G) ora=c¢, bd € E(H).

The following lemma is crucial in our study about radius, diameter, center and
periphery of graph operations.

Lemma 2.1. Let G and H be graphs. Then we have:

L &g (ab) =5 (a) + &y (b),
2. ggay (8,0)=2,
3 6o (a,b)={l gs(@)=1 and ¢, (b):17
2 &g (@)=2 or g (b)=>2
1 ¢g;(@)=1o0r ¢g,4(a)=1
2 g (@22 or g ()22
es(@)+1 b=¢
eg(@)+2 beV(H)
1 ¢g;(@)=1and¢g,(b)=1
6. eqpp(@b)=7 2 g5(a)=1and ¢,(b)>1.
gs(a) es(@)=>2
Proof. For proofs we refer the reader to [3]. 0

4. €G+H (a) = {

5. £y, (a,b) ={

3. MAIN RESULTS

In this section, at first obtain the radius six composite graphs and then by using obtained
results, we can introduce the center of these composite graphs.
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Lemma 3.1. Let G and H be two graphs. Then
1L r(GxH)=r(G)+r(H),

2. r(GdoH)=2,

3. r(GvH)={21 3(a'b)EV(GV"'li.v\ie(a)=8H(b)=1 |
1 r(G)=1o0r r(H)=1

4. r(G+H)—{2 [(G)>2 and r(H)> 2’

5. r(GoH) =r(G) +1,
1 r(G)=1 andr(H)=1
6. r(G[H])=4 2 r(G)=1 andr(H)>2.
r(G) rG)>2

Proof. 1. By definition of radius of graph and Lemma 2.1 (1), we have

r(GxH)=min{e.., (a,b)|(a,b) eV(GxH)}
=min{e; (@) +&, (b)|(a,b) eV(GxH)}
=min{e; (a)|a eV (G)}+minfe, (b) IbeV(H)}
=r(G)+r(H).
2. By definition and Lemma 2.1 (2), the proof is straightforward.

3. By using Lemma 2.1 (3), if there exists a vertex (a, b) €V (GvH) such that
gs(@)=¢,(0)=1, then 1eE={¢,,,(a,b)|(a,b) eV(GVvH)}={1,2}. Thus, the set E
minimizes in 1. Thus in this <case r(GvH) = 1.  Otherwise
E ={ec., (a,b)|(a,b) eV (G Vv H)}={2}, and it is clear that the set E minimizes in 2, then

r(GvH)=2.

4. By definition of radius of graph, r(G+H)=min{e;,,(a)lacV(G+H)}. Suppose
there exists ae V(G+H) such that e;(a) =1 or ¢,(a)=1, then r(G) = 1 or r(H) =1 and
then 1€ E ={¢e..,(a)|laeV (G +H)}<{L2}. Thus the set E minimizes in 1. It means that
r(G + H) = 1. Otherwise r(G + H) = 2.

5. By definition of corona product of graph and Lemma 2.1 (5), we have:
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r(GoH) = min{eg,, (a,b)|(a,b) eV (GoH)}
=min{e; (a)+1laeV(G)}
=r(G)+1.
6. By definition and Lemma 2.1 (6), The proof is obvious. 0

Now by using Lemma 3.1 we can determine the center of the Cartesian, symmetric
difference disjunction, join and corona product of graphs.

Theorem 3.2. Let G and H be graphs. Then

1. C(GxH) =C(G)xC(H),
2.C(G®H)=V(G®H),

3 oGy H) < |CE@)*C(H) 1(G)=r(H)=1

eV V(GVvH) oW, !
C(G)UC(H) r(G)=land r(H)=1

scGiHy=) <© r(G)=1and r(H)>2

C(H) r(G)>2and r(H)=1'
V(G+H) r(G)>2and r(H)>2
5. C(GoH) =C(G),
6.C(G[H]):{C(G)XC(H) r(G)=1and r(H):ll

C(G)xV (H) o.W.

Proof. 1. The center contains all vertices with minimum eccentricity. Thus
C(GxH)={(ab)|sc.(ab)=r(GxH)}
={(a,b) |&;(a) + ¢, (b) =r(G) +r(H)}
={(a,b)|e5(a) =r(G), &, (b) =r(H)}
=C(G)xC(H).
2. By Lemma 3.1 (2), r(G@H)=2. Then for each (a, b)eV(G®H), &.ey(a,b)=
r(G@H)=2.Hence C(G®H)=V(G®H)and it means that G @ H is self centered.

3.ByLemma3.1(3),r(GvH)=21or2. Ifr(GvH)=1,then
C(GvH)={(a,b)|eg,,(a,b)=r(GvH)=1}

={(a,b) [e; (@) =r(G), &, (b) =r(H)}
—C(G)x C(H).
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It remains the case, r(Gv H) = 2. In this case for each (a, b) eV (GV H), ¢5(a) > 2

or ¢, (b) > 2. Hence C(Gv H) =V (Gv H). The same proof can be applied for determining
the periphery of G v H.

4. By Lemma 3.1 (4), if r(G+H) = 1 thenr(G) =1 orr(H) = 1. If r(G) = 1 and r(H) = 1, then
for each ac C(G) UC(H), &, (@)= r(G + H) = 1. Obviously, for each a ¢ C(G)u C(H),
&g,y (@)= 2. Thus C(G+H) = C(G)u C(H). Now if r(G) = 1 and r(H) > 2, then for each ae
C(G), &5, (a)=r(G+H) = 1. Obviously, for each a ¢ C(G), ¢;., (@)= 2. Thus C(G+H) =

C(G). By similar argument we can show that, if r(G) > 2 and r(H) = 1, then C(G+H) =
C(H). It remains to exclude the case when r(G) > 2 and r(H) > 2. In this case for each ae
V(G+H), &, (@) = r(G+H) = 2 and it concludes that C(G+H) = V(G+H).

5. By definition of corona product of graphs, one can see that
C(GoH) ={(a,b) |(a,b) e V(GoH), ¢, (a,b) =r(GoH)}

={(a,¢)|aeC(G)}
=C(G).

6. The proof is straightforward. 0

Corollary 3.3. Let G1,Gy, ...,Gs be graphs. Then
C(qGi) :HC(Gi)'
1= i=1
Proof. Apply induction and Lemma 2.1(1), one can see that,

S
£, (3,8,..,8,)= D e ().
= i=1

S
- 1
i=1 i=1 i=1

desired. m

for each aeV(Gy). It is show that r(ITG,)=>"r(G,)and thenC([1G,) =[[C(G,) as
f i=1

We now can determine the center of some interesting chemical graphs.

Corollary 3.4.
K, mand n are odd
C(P,xP,)=+K, either m or n is odd ,
C, mand n are evan
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c );{KZ n is odd

"7 |C, nis even’
K,xC, mis odd
K,xC, m is even

C(P, an)z{

. K, m is odd :
Proof. Since C(P,)= . and C(C,) = C, and by using Theorem 3.2, the
K, m is even

proof is straightforward. 0
Corollary 3.5. Every nanotorus covered by C, is self-centered.

Proof. By Corollary 3.3, the Cartesian product of two self centered graphs, is self centered.
Since each cycle is self centered and a nanotorus covered by C, is Cartesian product of two

cycles, hence it’s self centered. 0

Let G be a Hamming graph. Then G G =K, xK  x...xK_, for some positive

integers ns, ..., n.Since for each positive integer n, C(K,) = K, it means that K, is self
centered and then r(G) =t and C(G) = G.

Corollary 3.6. Let G and H be graphs. Then G @ H is self-centered.
Corollary 3.7. If G and H be two self-centered graphs, then G v H is self-centered.
Example 3.8. Graphs, C,v Cp, Chv Ky and K, v Ky, are self-centered.
Corollary 3.9. Let G and H be two connected graphs. Then G + H is self-centered if and
only if one of the statements is hold:
i. Graphs G and H are self-centered and r(G) =r(H) = 1.
ii. min{r(G), r(H)}>2.
Corollary 3.10. Let G and H be two connected graphs. The following statements are hold:
I. If G and H are self-centered, then G[H] is self-centered.

ii. If G is self-centered and max{r(G), r(H)} > 2, then G[H] is self-centered.

Lemma 3.11. Let G and H be graphs. Then
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1. d(GxH)=d(G)+d(H),

2. d(G@H)=2,

3.d(GvH):{21 V(a'b)EV(GVHgiwfe(a)we(b):l |
{1 rG)=1 and r(H)=1

4.d(G+H)—{2 1(G)>2 or r(H) 22

5.d(GoH) =d(G) + 2,
1 d(G)=1 andd(H)=1
6. d(G[H])=< 2 d(G)=1 andd(H)>2.
d(G) d(G)>2

Proof. The proof is similar to Lemma 3.1. 0

Remark. For each connected graphs G and H, we have d(GoH) = d(G)+2 > d(G)+1 > r(G)
+ 1 =r(GoH). Then GoH is not self—centered.

Theorem 3.12. Let G and H be graphs. Then

1. P(GxH)=P(G)xP(H),

2.PG@®&H)=V(G®H),

3 P(GVH)Z{V(GVH) d(G)=d(H)=1’
A 0.W.

where A={(X,y)|e;(@)=2 or ¢, (b)=2},

(G)uV(H) d(G)=1and d(H)=1
A 0.W. ’
where A={aeV(G)|¢es(a)>22}u{aeV(H)| e, (a)> 2},

4. P(G+H):{V

5. P(GoH) =P(G) xV (H),

V(G)xV(H) d(G)=1and d(H)=1

6. P(G[H]) =V (G)x A d(G)=1and d(H)>1,
P(G)xV (H) d(G)>2

where A={beV(H)]| e, (b) > 2}.
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Proof. The proof is similar to Lemma 3.2. 0

In this paper the center and periphery of six graph operations are computed. In
graph theory literature, there are many other graph operations. One of the most important
such graph operations is tensor product. The tensor product G® H of G and H is a graph
such that the vertex set of G®H is V(G)xV(H) and any two vertices (a, b) and (c, d) are
adjacent if and only if a is adjacent with ¢ and b is adjacent with d. In [4], the authors
proved that if one of G and H are not bipartite then the tensor product G®H is connected.
In [7], the author obtained eccentricity of a vertex in the tensor product G® H, see [6] for
more details. The splice and link are two important graph operations such that they have
some application in chemistry. Let G and H be two simple and connected graphs with
disjoint vertex sets. For given vertices ac V(G) and be V(H), a splice of G and H is defined
as the graph (G.H)(a, b) obtained by identifying the vertices a and b. Similarly, a link of G
and H is defined as the graph (G~H)(a, b) obtained by joining a and b by an edge, see [2].
Moreover, in [10], the authors study on the eccentric connectivity index of graphs with
subdivided edges. We would like to present open questions related to the results of this

paper.
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