
Iranian J. Math. Chem. 9 (4) December (2018) 241 − 254 

 

 
 
The Extremal Graphs for (Sum-) Balaban Index of 
Spiro and Polyphenyl Hexagonal Chains 
 
YANG ZUO, YAQIAN TANG AND HANYUAN DENG 

 
College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 
410081, P. R. China  
 
ARTICLE INFO  ABSTRACT 
Article History: 
Received  9 August 2018 
Accepted  1 October 2018 
Published online  15 December 2018 
Academic Editor: Sandi Klavžar 

As highly discriminant distance-based topological indices, the 
Balaban index and the sum-Balaban index of a graph ܩ  are 
defined as (ܩ)ܬ = ௠

ఓାଵ
∑  ௨௩∈ா

ଵ
ඥ஽ಸ(௨)஽ಸ(௩)

 and ܵ(ܩ)ܬ =
௠
ఓାଵ

∑  ௨௩∈ா
ଵ

ඥ஽ಸ(௨)ା஽ಸ(௩)
, respectively, where (ݑ)ீܦ =

∑  ௩∈௏ ,ݑ)݀  is the ݉ ,ܩ in ݑ is the distance sum of a vertex (ݒ
number of edges and ߤ is the cyclomatic number of ܩ. They are 
useful distance-based descriptor in chemometrics. In this paper, 
we focus on the extremal graphs of spiro and polyphenyl 
hexagonal chains with respect to the Balaban index and the 
sum-Balaban index. 
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1 INTRODUCTION 

Polyphenyl and spiro hexagonal chains have been widely investigated, and they represent a 
relevant area of interest in mathematical chemistry because they have been used to study 
intrinsic properties of molecular graphs. Polyphenyls and their derivatives, which can be 
used in organic synthesis, drug synthesis, heat exchangers, etc., attracted the attention of 
chemists for many years [7, 8, 20, 21, 26, 28, 30]. Spiro compounds are an important class 
of cycloalkanes in organic chemistry. A spiro union in spiro compounds is a linkage 
between two rings that consists of a single atom common to both rings and a free spiro 
union is a linkage that consists of the only direct union between the rings. Several works 
have been developed to analyze extremal values and extremal graphs for many topological 
indices on the spiro and polyphenyl hexagonal chains. Some results on energy, Merrifield-
Simmons index, Hosoya index, Wiener index and Kirchhoff index of the spiro and 
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polyphenyl chains were reported in [2, 9, 12, 13, 16, 17, 35, 32]. In this paper, we will 
consider the extremal values and the extremal graphs for the Balaban index and the sum-
Balaban index on polyphenyl and spiro chains. 

As a highly discriminant distance-based topological index, the Balaban index [3] 
was defined on the basis of the Randić formula but using distance sums for vertices instead 
of vertex degrees. The Balaban index is a variant of connectivity index, represents extended 
connectivity and is a good descriptor for the shape of the molecules. It shows a good 
isomer discrimination ability and produces good correlations with some physical 
properties, such as the motor octane number [6], and it appears in theoretical models for 
predicting and screening drug candidates in rational drug design strategies [22]. It is of 
interest in combinatorial chemistry. It turned out to be applicable to several questions of 
molecular chemistry. 

Throughout this paper we consider only simple and connected graphs. For a graph 
ݒ and ݑ The distance between vertices .(ܩ)ܧ and edge set (ܩ)ܸ with vertex set ܩ  in ܩ , 
denoted by ݀ீ(ݒ,ݑ), is the length of a shortest path connecting ݑ  and ݒ . Let (ݑ)ீܦ =
∑  ௩∈௏(ீ)  .ܩ in ݑ which is the distance sum of vertex ,(ݒ,ݑ)݀

The cyclomatic number ߤ  of ܩ  is the minimum number of edges that must be 
removed from ܩ in order to transform it to an acyclic graph. Let |ܸ(ܩ)| = |(ܩ)ܧ| ,݊ = ݉, 
it is known that ߤ = ݉ − ݊ + 1. 

The Balaban index of a connected graph ܩ is defined as  
(ܩ)ܬ = ௠

ఓାଵ
∑  ௨௩∈ா(ீ)

ଵ
ඥ஽ಸ(௨)⋅஽ಸ(௩)

. 

 It was introduced by A. T. Balaban in [3, 4], which is also called the average distance-sum 
connectivity or ܬ index. It appears to be a very useful molecular descriptor with attractive 
properties. In 2010, Balaban et al. [5] also proposed the sum-Balaban index ܵ(ܩ)ܬ of a 
connected graph ܩ, which is defined as  

(ܩ)ܬܵ = ௠
ఓାଵ

∑  ௨௩∈ா(ீ)
ଵ

ඥ஽ಸ(௨)ା஽ಸ(௩)
. 

The Balaban index and the sum-Balaban index were used in various quantitative 
structure-property relationship and quantitative structure activity relationship studies. Until 
now, the Balaban index and the sum-Balaban index have gained much popularity and new 
results related to them are constantly being reported, see [1, 10, 11, 14, 15, 18, 19, 25, 27, 
29, 31, 33, 34]. 

Let ܩ be a cactus graph in which each block is either an edge or a hexagon. ܩ is 
called a polyphenyl hexagonal chain if each hexagon of ܩ has at most two cut-vertices, and 
each cut-vertex is shared by exactly one hexagon and one cut-edge. The number of 
hexagons in ܩ is called the length of ܩ. An example of a polyphenyl hexagonal chain is 
shown in Figure 1.  
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Figure 1: A polyphenyl hexagonal chain of length 8. 

 
Let ܲܲܥ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3)  be a polyphenyl hexagonal chain of length ݊ . 

There is a cut-edge ݒ௡ିଵݑ௡ between ܲܲܥ௡ିଵ and ܪ௡, see Figure 2.  
Note that any polyphenyl hexagonal chain of length ݊ has 6݊ vertices and 7݊ − 1 

edges. A vertex ݒ of ܪ௞  is said to be ortho-, meta-, and para-vertex if the distance between 
ݒ  and ݑ௞  is 1, 2 and 3, denoted by ݋௞ , ݉௞  and ݌௞ , respectively. Example of Figure 2, 
௡݋ = ,ଶݔ ଺, ݉௡ݔ = ௡݌ ,ହݔ,ଷݔ =  ସ. Obviously, every hexagon has two ortho-vertices, twoݔ
meta-vertices and one para-vertex except the first hexagon ܪଵ. 

A polyphenyl hexagonal chain ܲܲܥ௡  is a polyphenyl ortho-chain if ݒ௞ = ௞݋  for 
2 ≤ ݇ ≤ ݊ − 1. The polyphenyl meta-chain and polyphenyl para-chain are defined in a 
completely analogous manner. 

 

 
Figure 2: A polyphenyl hexagonal chain of length ݊. 

 
The polyphenyl ortho-, meta-, and para-chains of length ݊ are denoted by ௡ܱ, ܯ௡ 

and ௡ܲ, respectively. Examples of polyphenyl ortho-, meta-, and para-chains are shown in 
Figure 3.  

 
Figure 3: Polyphenyl hexagonal ortho-, meta-, and para-chains of length 7. 
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The definition of spiro hexagonal chain is same as definition of polyphenyl 
hexagonal chain. A hexagonal cactus is a connected graph in which every block is a 
hexagon. A vertex shared by two or more hexagon is called a cut-vertex. If each hexagon of 
a hexagonal cactus ܩ has at most two cut-vertices, and each cut-vertex is shared by exactly 
two hexagons, then ܩ is called a spiro hexagonal chain. The number of hexagon in ܩ is 
called the length of ܩ. An example of a spiro hexagonal chain is shown in Figure 4.  

 
Figure 4: A spiro hexagonal chain of length 7. 

 

Obviously, a spiro hexagonal chain of length ݊ has 5݊ + 1 vertices and 6݊ edges. 
Let ܵܲܥ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊. There is a cut-
vertex ݑ௡ between ܵܲܥ௡ିଵ and ܪ௡, see Figure 5.  

 

 
Figure 5: A spiro hexagonal chain of length ݊. 

 

A vertex ݒ of ܪ௞ is said to be ortho-, meta-, and para- vertex if the distance between 
 ௞, respectively. A spiro hexagonal chain is݌ ௞, ݉௞ and݋ ௞ is 1, 2 and 3, denoted byݑ and ݒ
a spiro ortho-chain if ݑ௞ = ௞݋  for 2 ≤ ݇ ≤ ݊. The spiro meta-chain and para-chains are 
defined in a completely analogous manner. The spiro ortho-, meta-, and para-chains of 
length ݊ are denoted by ܵ ௡ܱ, ܵܯ௡ and ܵ ௡ܲ, respectively. 

 

The following lemmas will be used in the next section. 
 

Lemma 1 ([14]) Let ݔ, ܽ,ݕ ∈ ܴା  such that ݔ ≥ ݕ + ܽ . Then ଵ
√௫௬

≥ ଵ
ඥ(௫ି௔)(௬ା௔)

 with 

equality if and only if ݔ = ݕ + ܽ.  
 

Lemma 2 ([15]) Let ݎଵ, ,ଵݐ ,ଶݎ ଶݐ ∈ ܴା such that ݎଵ > ଵݐ  and ݎଶ − ଵݎ = ଶݐ − ଵݐ > 0. Then 
ଵ
√௥భ

+ ଵ
√௧మ

< ଵ
√௥మ

+ ଵ
√௧భ

.  
 

Lemma 3 ([14]) Let ܽ,ݓ, ,ݔ ,ݕ ݖ ∈ ܴା such that ௔
௫
≥ ௔

௪
, ௔
௬
≥ ௔

௭
. Then 
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ଵ
ඥ(௪ା௔)(௭ା௔)

+ ଵ
√௫௬

≥ ଵ
√௪௭

+ ଵ
ඥ(௫ା௔)(௬ା௔)

. 

 
2.  (SUM-) BALABAN INDEX OF POLYPHENYL HEXAGONAL CHAINS  

In this section, we first give two cut-edge transformations on ܲܲܥ௡, and then determine the 
extremal graphs by using the transformations. 
 

The first cut-edge transformation on ࢔࡯ࡼࡼ :  Let ܩ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3)  be a 
polyphenyl hexagonal chain of length ݊ ଵݔ .  and ݔସ  are two cut-vertices in the ݇ −  ℎݐ
hexagon ܪ௞ , and the distance between ݔଵ and ݔସ is 3. If ܩᇱ is the graph obtained from ܩ by 
deleting the cut edge ݔସݑ௞ାଵ  between ܪ௞  and ܪ௞ାଵ , and adding a new cut-edge ݔଷݑ௞ାଵ 
between ܪ௞  and ܪ௞ାଵ (see Figure 6), then we say that ܩᇱ is obtained from ܩ by the first 
cut-edge transformation.  

 

 
Figure 6: The first cut-edge transformation. 

 

Lemma 4  Let ܩ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a polyphenyl hexagonal chain of length ݊. ܩᇱ 
is obtained from ܩ by the first cut-edge transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ
 

Proof. Let ܨଵ = ௞ିଵܪ⋯ଶܪଵܪ ଶܨ , = ௞ܪ ଷܨ , = ௡ܪ⋯௞ାଶܪ௞ାଵܪ . The length of ܨଵ  is 
ܽ = ݇ − 1 and the length of ܨଷ is ܾ = ݊ − ݇. Obviously, ܽ + ܾ = ݊ − 1. Without loss of 
generality, let ܽ ≥ ܾ. For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ  = ∑  ௨∈ிభ ௫ݒ)ீ݀ , (ݑ + ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிయ ௫ݒ)ீ݀ ,  ,(ݑ
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫  (ݑ,
            ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫   ,(ݑ,
            ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫   ,(ݑ,
            ∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ.  
So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ and ீܦ(ݒ௫) > ௬ݒ For a vertex .(௫ݒ)ᇲீܦ ∈   ଷ, we haveܨ
(௬ݒ)ீܦ  = ∑  ௨∈ிభ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிమ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிయ  ,(ݑ,௬ݒ)ீ݀
(௬ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௬,  .(ݑ
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Furthermore, 
∑  ௨∈ிభ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬   ,(ݑ,
∑  ௨∈ிమ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௬,   ,(ݑ
∑  ௨∈ிయ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிయ ݀ீᇲ(ݒ௬, (ݑ + 6ܽ. So, ீܦ(ݒ௬) (௬ݒ)ᇲீܦ− = 6ܽ  
(௬ݒ)ீܦ >  .(௬ݒ)ᇲீܦ

 

For a vertex in ܸ(ܨଶ) = ,ଷݔ,ଶݔ,ଵݔ}   ଺}, it is easy to see thatݔ,ହݔ,ସݔ
(ଵݔ)ீܦ  (ଵݔ)ᇲீܦ− = −(ଶݔ)ீܦ (ଶݔ)ᇲீܦ = −(ଷݔ)ீܦ (ଷݔ)ᇲீܦ = 6ܾ, 
(ସݔ)ᇲீܦ  (ସݔ)ீܦ− = −(ହݔ)ᇲீܦ (ହݔ)ீܦ = −(଺ݔ)ᇲீܦ (଺ݔ)ீܦ = 6ܾ. 
(I) For an edge ݒ௫ݒ௬ ∈ (ଵܨ)ܧ ∪   we have ,(ଷܨ)ܧ

ଵ
ඥ஽ಸᇲ(௩ೣ)஽ಸᇲ(௩೤)

> ଵ
ඥ஽ಸ(௩ೣ)஽ಸ(௩೤)

                                              (1) 

and  
ଵ

ඥ஽ಸᇲ(௩ೣ)ା஽ಸᇲ(௩೤)
> ଵ

ඥ஽ಸ(௩ೣ)ା஽ಸ(௩೤)
                                            (2) 

 since ீܦ(ݒ௫) > (௬ݒ)ீܦ and (௫ݒ)ᇲீܦ >  .(௬ݒ)ᇲீܦ
(II) In what follows, we consider an edge in 
,௞ିଵݒଵݔ,ଵݔ଺ݔ,଺ݔହݔ,ହݔସݔ,ସݔଷݔ,ଷݔଶݔ,ଶݔଵݔ} {௞ାଵݑସݔ . Let ܯ = ∑  ௨∈ிభ (ݑ,ଵݔ)ீ݀ +
∑  ௨∈ிయ (ݑ,ସݔ)ீ݀ + ∑  ௨∈ிమ (ݑ,ݔ)ீ݀ , where ݔ ∈ ,ଷݔ,ଶݔ,ଵݔ} {଺ݔ,ହݔ,ସݔ . Then ܯ =
∑  ௨∈ிభ ݀ீᇱ(ݔଵ, (ݑ + ∑  ௨∈ிయ ݀ீᇱ(ݔଷ,ݑ) + ∑  ௨∈ிమ ݀ீᇱ(ݑ,ݔ). It can be checked directly that  
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ18ܾ = ܯ + 12ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ12ܾ = ܯ + 6ܽ + 6ܾ 
(ଷݔ)ீܦ  = ܯ + 12ܽ + (ଷݔ)ᇲீܦ6ܾ = ܯ + 12ܽ 
(ସݔ)ீܦ  = ܯ + (ସݔ)ᇲீܦ18ܽ = ܯ + 18ܽ + 6ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ6ܾ = ܯ + 12ܽ + 12ܾ 
(଺ݔ)ீܦ  = ܯ + 6ܽ + (଺ݔ)ᇲீܦ12ܾ = ܯ + 6ܽ + 18ܾ. 
(i) For the edges ݔଵݒ௞ିଵ,ݔସݑ௞ାଵ ∈ ,௞ିଵݒଵݔ and (ܩ)ܧ ௞ାଵݑଷݔ ∈   we have ,(′ܩ)ܧ

ଵ
ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௩ೖషభ)

+ ଵ
ඥ஽ಸᇲ(௫య)஽ಸᇲ(௨ೖశభ)

> ଵ
ඥ஽ಸ(௫భ)஽ಸ(௩ೖషభ)

+ ଵ
ඥ஽ಸ(௫ర)஽ಸ(௨ೖశభ)

         (3) 

 and  
ଵ

ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௩ೖషభ)
+ ଵ

ඥ஽ಸᇲ(௫య)ା஽ಸᇲ(௨ೖశభ)
> ଵ

ඥ஽ಸ(௫భ)ା஽ಸ(௩ೖషభ)
+ ଵ

ඥ஽ಸ(௫ర)ା஽ಸ(௨ೖశభ)
.       (4) 

since ீܦ(ݔଵ) > (ଵݔ)ᇲீܦ (௞ିଵݒ)ீܦ , > (௞ିଵݒ)ᇲீܦ (ସݔ)ீܦ , > (ଷݔ)ᇲீܦ (௞ାଵݑ)ீܦ , >
 .(௞ାଵݑ)ᇲீܦ
(ii) For the edges ݔଵݔ଺,ݔଷݔସ ∈ (ܩ)ܧ , we have ீܦᇲ(ݔ଺) ≥ (ଵݔ)ᇲீܦ + (ଵݔ)ீܦ   ,6ܾ =
(ଵݔ)ᇲீܦ + 6ܾ and ீܦ(ݔ଺) = −(଺ݔ)ᇲீܦ 6ܾ. By Lemma 1, we can get  

 ଵ
ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௫ల)

≥ ଵ
ඥ஽ಸ(௫భ)஽ಸ(௫ల)

                                      (5) 

and  
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 ଵ
ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௫ల)

≥ ଵ
ඥ஽ಸ(௫భ)ା஽ಸ(௫ల)

                                           (6) 

Also, ீܦᇲ(ݔସ) ≥ (ଷݔ)ᇲீܦ + (ଷݔ)ீܦ   ,6ܾ = (ଷݔ)ᇲீܦ + 6ܾ and ீܦ(ݔସ) = (ସݔ)ᇲீܦ − 6ܾ, by 
Lemma 1, we have  

 ଵ
ඥ஽ಸᇲ(௫య)஽ಸᇲ(௫ర)

≥ ଵ
ඥ஽ಸ(௫య)஽ಸ(௫ర)

                              (7) 

and  
 ଵ

ඥ஽ಸᇲ(௫య)ା஽ಸᇲ(௫ర)
≥ ଵ

ඥ஽ಸ(௫య)ା஽ಸ(௫ర)
                                (8) 

(iii) For the edges ݔଵݔଶ,ݔସݔହ ∈ (ܩ)ܧ , let ݔ = (ଵݔ)ᇲீܦ ݕ , = (ଶݔ)ᇲீܦ ݓ , = (ସݔ)ீܦ , 
ݖ = (ହݔ)ீܦ . Then ீܦ(ݔଵ) = ݔ + 6ܾ (ଶݔ)ீܦ , = ݕ + 6ܾ (ସݔ)ᇲீܦ , = ݓ + 6ܾ (ହݔ)ᇲீܦ , =
ݖ + 6ܾ. Note that ݓ > ݖ ,ݔ > and ଺௕ ݕ

௫
> ଺௕

௪
, ଺௕
௬

> ଺௕
௭

, by Lemma 3, we have  

 ଵ
ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௫మ)

+ ଵ
ඥ஽ಸᇲ(௫ర)஽ಸᇲ(௫ఱ)

≥ ଵ
ඥ஽ಸ(௫భ)஽ಸ(௫మ)

+ ଵ
ඥ஽ಸ(௫ర)஽ಸ(௫ఱ)

                  (9) 

Now, let ݎଵ = (ସݔ)ீܦ + (ହݔ)ீܦ = ܯ2 + 30ܽ + 6ܾ ଶݎ , = (ସݔ)ᇲீܦ + (ହݔ)ᇲீܦ = ܯ2 +
30ܽ + 18ܾ ଵݐ , = (ଵݔ)ᇲீܦ + (ଶݔ)ᇲீܦ = ܯ2 + 6ܽ + 18ܾ ଶݐ , = (ଵݔ)ீܦ + (ଶݔ)ீܦ = ܯ2 +
6ܽ + 30ܾ . Then ݎଶ − ଵݎ = ଶݐ − ଵݐ = 12ܾ > 0 ଵݎ , − ଵݐ = 24ܽ − 12ܾ > 0  (since ܽ ≥ ܾ >
0). By Lemma 2, we have  

 ଵ
ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௫మ)

+ ଵ
ඥ஽ಸᇲ(௫ర)ା஽ಸᇲ(௫ఱ)

> ଵ
ඥ஽ಸ(௫భ)ା஽ಸ(௫మ)

+ ଵ
ඥ஽ಸ(௫ర)ା஽ಸ(௫ఱ)

      (10) 

(iv) For the edges ݔଶݔଷ, ଺ݔହݔ ∈   by the same ways as in (iii), we can get ,(ܩ)ܧ
 ଵ

ඥ஽ಸᇲ(௫మ)஽ಸᇲ(௫య)
+ ଵ

ඥ஽ಸᇲ(௫ఱ)஽ಸᇲ(௫ల)
≥ ଵ

ඥ஽ಸ(௫మ)஽ಸ(௫య)
+ ଵ

ඥ஽ಸ(௫ఱ)஽ಸ(௫ల)
            (11) 

 ଵ
ඥ஽ಸᇲ(௫మ)ା஽ಸᇲ(௫య)

+ ଵ
ඥ஽ಸᇲ(௫ఱ)ା஽ಸᇲ(௫ల)

> ଵ
ඥ஽ಸ(௫మ)ା஽ಸ(௫య)

+ ଵ
ඥ஽ಸ(௫ఱ)ା஽ಸ(௫ల)

        (12) 

From Equations (1−12) and the definition of the Balaban index and the sum-
Balaban index, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <  ∎                                                .(ᇱܩ)ܬܵ

 

The second cut-edge transformation on ࢔࡯ࡼࡼ :  Let ܩ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3)  be a 
polyphenyl hexagonal chain of length ݊ ଵݔ .  and ݔଷ  are two cut-vertices in the ݇ −  ℎݐ
hexagon ܪ௞ , and the distance between ݔଵ and ݔସ is 2. If ܩᇱ is the graph obtained from ܩ by 
deleting the cut edge ݔଷݑ௞ାଵ  between ܪ௞  and ܪ௞ାଵ , and adding a new cut-edge ݔଶݑ௞ାଵ 
between ܪ௞  and ܪ௞ାଵ (see Figure 7), then we say that ܩᇱ is obtained from ܩ by the second 
cut-edge transformation.  
 

Lemma 5  Let ܩ௡ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a polyphenyl hexagonal chain of length ݊. ܩᇱ 
is obtained from ܩ  by the second cut-edge transformation. Then (ܩ)ܬ < (ᇱܩ)ܬ  and 
(ܩ)ܬܵ <   .(ᇱܩ)ܬܵ
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Proof. Let ܨଵ = ௞ିଵܪ⋯ଶܪଵܪ ଶܨ , = ௞ܪ ଷܨ , = ௡ܪ⋯௞ାଶܪ௞ାଵܪ . The length of ܨଵ  is 
ܽ = ݇ − 1 and the length of ܨଷ is ܾ = ݊ − ݇. Obviously, ܽ + ܾ = ݊ − 1. Without loss of 
generality, let ܽ ≥ ܾ. 
 

 
 

Figure  7: The second cut-edge transformation. 
 

For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ     = ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ + ∑  ௨∈ிయ ௫ݒ)ீ݀  ,(ݑ,
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫  (ݑ,
 and ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ , (ݑ , ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, , 
∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ . So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ  and ீܦ(ݒ௫) >
௬ݒ For a vertex .(௫ݒ)ᇲீܦ ∈   ଷ, we haveܨ
(௬ݒ)ீܦ  = ∑  ௨∈ிభ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிమ (ݑ,௬ݒ)ீ݀ + ∑  ௨∈ிయ  ,(ݑ,௬ݒ)ீ݀
(௬ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇱ(ݒ௬ (ݑ, + ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௬,  (ݑ
 and ∑  ௨∈ிయ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிయ ݀ீᇱ(ݒ௬ (ݑ, , ∑  ௨∈ிమ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௬ (ݑ, , 
∑  ௨∈ிభ ,௬ݒ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇲ(ݒ௬, (ݑ + 6ܽ . So, ீܦ(ݒ௬) (௬ݒ)ᇲீܦ− = 6ܽ  and ீܦ(ݒ௬) >
ଶܨ For a vertex in .(௬ݒ)ᇲீܦ = ,ଷݔ,ଶݔ,ଵݔ}   ଺}, letݔ,ହݔ,ସݔ
ܯ  = ∑  ௨∈ிభ (ݑ,ଵݔ)ீ݀ + ∑  ௨∈ிయ (ݑ,ଶݔ)ீ݀ + ∑  ௨∈ிమ ,ݔ)ீ݀ (ݑ = ∑  ௨∈ிభ ݀ீᇱ(ݔଵ,ݑ) +
∑  ௨∈ிయ ݀ீᇱ(ݔଶ,ݑ) + ∑  ௨∈ிమ ݀ீᇱ(ݑ,ݔ) , where ݔ ∈ ,ଷݔ,ଶݔ,ଵݔ} {଺ݔ,ହݔ,ସݔ . It can be checked 
directly that  
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ12ܾ = ܯ + 6ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ6ܾ = ܯ + 6ܽ 
(ଷݔ)ீܦ  = ܯ + (ଷݔ)ᇲீܦ12ܽ = ܯ + 12ܽ + 6ܾ 
(ସݔ)ீܦ  = ܯ + 18ܽ + (ସݔ)ᇲீܦ6ܾ = ܯ + 18ܽ + 12ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ12ܾ = ܯ + 12ܽ + 18ܾ 
(଺ݔ)ீܦ  = ܯ + 6ܽ + (଺ݔ)ᇲீܦ18ܾ = ܯ + 6ܽ + 12ܾ. 
(I) For an edge ݒ௫ݒ௬ ∈ (ଵܨ)ܧ ∪ (௫ݒ)ீܦ we have ,(ଷܨ)ܧ > (௬ݒ)ீܦ ,(௫ݒ)ᇲீܦ >  .(௬ݒ)ᇲீܦ
So,  
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 ଵ
ඥ஽ಸᇲ(௩ೣ)஽ಸᇲ(௩೤)

> ଵ
ඥ஽ಸ(௩ೣ)஽ಸ(௩೤)

                                                (13) 

and  
 ଵ

ඥ஽ಸᇲ(௩ೣ)ା஽ಸᇲ(௩೤)
> ଵ

ඥ஽ಸ(௩ೣ)ା஽ಸ(௩೤)
                                                 (14) 

(II) In what follows, we consider an edge in 
,௞ିଵݒଵݔ,ଵݔ଺ݔ,଺ݔହݔ,ହݔସݔ,ସݔଷݔ,ଷݔଶݔ,ଶݔଵݔ}  .{௞ାଵݑଷݔ
(i) For the edges ݔଵݒ௞ିଵ,ݔଷݑ௞ାଵ ∈ ,௞ିଵݒଵݔ and (ܩ)ܧ ௞ାଵݑଶݔ ∈  it is easy to know ,(′ܩ)ܧ
that ீܦ(ݔଵ) > (ଵݔ)ᇲீܦ (௞ିଵݒ)ீܦ , > (௞ିଵݒ)ᇲீܦ (ଷݔ)ீܦ , > (ଶݔ)ᇲீܦ (௞ାଵݑ)ீܦ , >
  And .(௞ାଵݑ)ᇲீܦ

ଵ
ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௩ೖషభ)

+ ଵ
ඥ஽ಸᇲ(௫మ)஽ಸᇲ(௨ೖశభ)

> ଵ
ඥ஽ಸ(௫భ)஽ಸ(௩ೖషభ)

+ ଵ
ඥ஽ಸ(௫య)஽ಸ(௨ೖశభ)

,          (15) 
ଵ

ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௩ೖషభ)
+ ଵ

ඥ஽ಸᇲ(௫మ)ା஽ಸᇲ(௨ೖశభ)
> ଵ

ඥ஽ಸ(௫భ)ା஽ಸ(௩ೖషభ)
+ ଵ

ඥ஽ಸ(௫య)ା஽ಸ(௨ೖశభ)
.      (16) 

(ii) For the edges ݔଶݔଷ,ݔହݔ଺ ∈ (ଷݔ)ᇲீܦ because ,(ܩ)ܧ > (ଶݔ)ᇲீܦ + 6ܾ, by Lemma 1, we 
have  

 ଵ
ඥ஽ಸᇲ(௫మ)஽ಸᇲ(௫య)

≥ ଵ
ඥ஽ಸ(௫మ)஽ಸ(௫య)

                                (17) 

and  
 ଵ

ඥ஽ಸᇲ(௫మ)ା஽ಸᇲ(௫య)
= ଵ

ඥ஽ಸ(௫మ)ା஽ಸ(௫య)
.                                  (18) 

Also, because ீܦᇲ(ݔହ) = (଺ݔ)ᇲீܦ + 6ܾ, by Lemma 1, we have  
 ଵ

ඥ஽ಸᇲ(௫ఱ)஽ಸᇲ(௫ల)
≥ ଵ

ඥ஽ಸ(௫ఱ)஽ಸ(௫ల)
                               (19) 

and  
 ଵ

ඥ஽ಸᇲ(௫ఱ)ା஽ಸᇲ(௫ల)
= ଵ

ඥ஽ಸ(௫ఱ)ା஽ಸ(௫ల)
.                                 (20) 

(iii) For the edges ݔଵݔଶ,ݔଷݔସ ∈ (ܩ)ܧ , let ݔ = (ଶݔ)ᇲீܦ ݕ , = (ଵݔ)ᇲீܦ ݓ , = (ଷݔ)ீܦ , 
ݖ = (ସݔ)ீܦ , then ݔ + 6ܾ = (ଶݔ)ீܦ ݕ , + 6ܾ = (ଵݔ)ீܦ ݓ , + 6ܾ = (ଷݔ)ᇲீܦ ݖ , + 6ܾ =
ݓ Note that .(ସݔ)ᇲீܦ > ݖ ,ݔ > ଺௕ ,ݕ

௫
> ଺௕

௪
, ଺௕
௬

> ଺௕
௭

, by Lemma 3, we have  

 ଵ
ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௫మ)

+ ଵ
ඥ஽ಸᇲ(௫య)஽ಸᇲ(௫ర)

> ଵ
ඥ஽ಸ(௫భ)஽ಸ(௫మ)

+ ଵ
ඥ஽ಸ(௫య)஽ಸ(௫ర)

.               (21) 

Let ݎଵ = (ଷݔ)ீܦ + (ସݔ)ீܦ = ܯ2 + 30ܽ + 6ܾ ଶݎ , = (ଷݔ)ᇲீܦ + (ସݔ)ᇲீܦ = ܯ2 + 30ܽ +
18ܾ ଵݐ , = (ଵݔ)ᇲீܦ + (ଶݔ)ᇲீܦ = ܯ2 + 6ܽ + 6ܾ ଶݐ , = (ଵݔ)ீܦ + (ଶݔ)ீܦ = ܯ2 + 6ܽ +
18ܾ. Then ݎଶ − ଵݎ = ଶݐ − ଵݐ = 12ܾ > ଵݎ ,0 − ଵݐ = 24ܽ > 0. By Lemma 2, we have  

 ଵ
ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௫మ)

+ ଵ
ඥ஽ಸᇲ(௫య)ା஽ಸᇲ(௫ర)

≥ ଵ
ඥ஽ಸ(௫భ)ା஽ಸ(௫మ)

+ ଵ
ඥ஽ಸ(௫య)ା஽ಸ(௫ర)

      (22) 

(iv) For the edges ݔଵݔ଺,ݔସݔହ ∈   by the same way as in (iii), we have ,(ܩ)ܧ
 ଵ

ඥ஽ಸᇲ(௫భ)஽ಸᇲ(௫ల)
+ ଵ

ඥ஽ಸᇲ(௫ర)஽ಸᇲ(௫ఱ)
≥ ଵ

ඥ஽ಸ(௫భ)஽ಸ(௫ల)
+ ଵ

ඥ஽ಸ(௫ర)஽ಸ(௫ఱ)
,               (23) 

ଵ
ඥ஽ಸᇲ(௫భ)ା஽ಸᇲ(௫ల)

+ ଵ
ඥ஽ಸᇲ(௫ర)ା஽ಸᇲ(௫ఱ)

> ଵ
ඥ஽ಸ(௫భ)ା஽ಸ(௫ల)

+ ଵ
ඥ஽ಸ(௫ర)ା஽ಸ(௫ఱ)

.            (24) 
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From Equations (13−24) and the definitions of the Balaban index and the sum-Balaban 
index, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <  ∎                                                              .(ᇱܩ)ܬܵ

 

Using the transformations above, we can get the extremal graphs for the (sum-) 
Balaban index on polyphenyl hexagonal chains. 
 

Theorem 6  Let ܲܲܥ௡ be a polyphenyl hexagonal chain of length ݊. Then  
)ܬ ௡ܲ) ≤ (௡ܥܲܲ)ܬ ≤ )ܬ ௡ܱ),        ܵܬ( ௡ܲ) ≤ (௡ܥܲܲ)ܬܵ ≤ )ܬܵ ௡ܱ), 

with equalities if and only if ܲܲܥ௡ = ௡ܱ, ܲܲܥ௡ = ௡ܲ, respectively.  
 

Proof. Suppose on the contrary that ܩ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) , a polyphenyl hexagonal 
chain of length ݊, has the maximum (sum-) Balaban index, and ܩ ≇ ௡ܱ . Then there is 
1 < ݇ < ݊ such that the distance between two cut-vertices ݑ௞ and ݒ௞, which belongs to the 
݇-th hexagon ܪ௞ , is 2 or 3. Let ܩᇱ be the graph obtained from ܩ by using the first or the 
second cut-edge transformation. By Lemmas 4 and 5, we have (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
a contradiction. So, ௡ܱ ,(ᇱܩ)ܬܵ  is the unique graph with the maximum (sum-) Balaban 
index. Similarly, we can show that ௡ܲ  is the unique graph with the minimum (sum-) 
Balaban index.                                                                                                                        ∎ 
 
3.  (SUM-) BALABAN INDEX OF SPIRO HEXAGONAL CHAINS 

As in the last section, we first give two transformations on ܵܲܥ௡. 
 

The first cut-vertex transformation on ࢔࡯ࡼࡿ:  Let ܩ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a spiro 
hexagonal chain of length ݊, ݒ௞ = ௞ାଵݒ ଵ andݔ =  ସ are two cut-vertices in ݇-th hexagonݔ
௞ܪ . If ܩᇱ is the graph obtained from ܩ by taking two cut-vertices ݒ௞ = ௞ାଵݒ ଵ andݔ =  ଷ inݔ
݇ -th hexagon ܪ௞ , then we say that ܩᇱ  is obtained from ܩ  by the first cut-vertex 
transformation, see Figure 8.  
 

 
Figure 8: The first cut-vertex transformation. 



The Extremal Graphs for (Sum-) Balaban Index of some Hexagonal Chains                     251 

 

Lemma 7  Let ܩ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊ ᇱܩ .  is 
obtained from ܩ  by the first cut-vertex transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ
 

Proof. Let ܨଵ = ௞ିଵܪ⋯ଶܪଵܪ ଶܨ , = ௞ܪ ଷܨ , = ௡ܪ⋯௞ାଶܪ௞ାଵܪ  in Figure 8. ܸ(ܨଶ) =
,ଵݔ} ,ହݔ,ସݔ,ଷݔ,ଶݔ ܽ ,ଷ is ܽ and ܾ, respectivelyܨ ଵ andܨ ଺} and the length ofݔ + ܾ = ݊ − 1. 
Let ܯ = ∑  ௨∈ிభ ,ଵݔ)ீ݀ (ݑ + ∑  ௨∈ிయ ,ସݔ)ீ݀ (ݑ + ∑  ௨∈ிమ ,ݔ)ீ݀ (ݑ , where ݔ ∈ (ଶܨ)ܸ . Then 
ܯ = ∑  ௨∈ிభ ݀ீᇲ(ݔଵ,ݑ) + ∑  ௨∈ிయ ݀ீᇲ(ݔଷ,ݑ) + ∑  ௨∈ிమ ݀ீᇲ(ݔ,  .(ݑ
For a vertex ݒ௫ ∈   ଵ, we haveܨ
(௫ݒ)ீܦ  = ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிమ ௫ݒ)ீ݀ (ݑ, + ∑  ௨∈ிయ ௫ݒ)ீ݀  ,(ݑ,
(௫ݒ)ᇲீܦ  = ∑  ௨∈ிభ ݀ீᇲ(ݒ௫ , (ݑ + ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, + ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ ,  ,(ݑ
 and ∑  ௨∈ிభ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிభ ݀ீᇱ(ݒ௫ , (ݑ , ∑  ௨∈ிమ ௫ݒ)ீ݀ , (ݑ = ∑  ௨∈ிమ ݀ீᇲ(ݒ௫ (ݑ, , 
∑  ௨∈ிయ ௫ݒ)ீ݀ (ݑ, = ∑  ௨∈ிయ ݀ீᇲ(ݒ௫ (ݑ, + 6ܾ . So, ீܦ(ݒ௫)− (௫ݒ)ᇲீܦ = 6ܾ  and ீܦ(ݒ௫) >
(௬ݒ)ீܦ Similarly, we have .(௫ݒ)ᇲீܦ (௬ݒ)ᇲீܦ− = 6ܽ for a vertex ݒ௬ ∈  ଷ. For a vertex inܨ
(ଶܨ)ܸ = ,ଵݔ} ,ହݔ,ସݔ,ଷݔ,ଶݔ   ଺}, it can be check directly thatݔ
(ଵݔ)ீܦ  = ܯ + (ଵݔ)ᇲீܦ,18ܾ = ܯ + 12ܾ 
(ଶݔ)ீܦ  = ܯ + 6ܽ + (ଶݔ)ᇲீܦ,12ܾ = ܯ + 6ܽ + 6ܾ 
(ଷݔ)ீܦ  = ܯ + 12ܽ + (ଷݔ)ᇲீܦ,6ܾ = ܯ + 12ܽ 
(ସݔ)ீܦ  = ܯ + (ସݔ)ᇲீܦ,18ܽ = ܯ + 18ܽ + 6ܾ 
(ହݔ)ீܦ  = ܯ + 12ܽ + (ହݔ)ᇲீܦ,6ܾ = ܯ + 12ܽ + 12ܾ 
(଺ݔ)ீܦ  = ܯ + 6ܽ + (଺ݔ)ᇲீܦ,12ܾ = ܯ + 6ܽ + 18ܾ. 
Using the method as in Lemma 4, we can get Lemma 7.                                                      ∎ 
 

The second cut-vertex transformation on ࢔࡯ࡼࡿ:  Let ܩ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a spiro 
hexagonal chain of length ݊, ݒ௞ = ௞ାଵݒ ଵ andݔ =  ଷ are two cut-vertices in ݇-th hexagonݔ
௞ܪ . If ܩᇱ is the graph obtained from ܩ by taking two cut-vertices ݒ௞ = ௞ାଵݒ ଵ andݔ =  ଶ inݔ
݇ -th hexagon ܪ௞ , then we say that ܩᇱ  is obtained from ܩ  by the second cut-vertex 
transformation (see Figure 9).  

 
Figure 9: The second cut-vertex transformation. 
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Lemma 8  Let ܩ = ݊)௡ܪ⋯ଶܪଵܪ ≥ 3) be a spiro hexagonal chain of length ݊ ᇱܩ .  is 
obtained from ܩ by the second cut-vertex transformation. Then (ܩ)ܬ < (ܩ)ܬܵ and (ᇱܩ)ܬ <
  .(ᇱܩ)ܬܵ

 
Proof. The proof is similar to Lemma 5, we omit it here. 

 

Using the first and the second cut-vertex transformations and Lemmas 7-8, we can 
directly obtain the following result, which determines the extremal graphs for the (sum-) 
Balaban index on spiro hexagonal chains. 

 

Theorem 9  Let ܵܲܥ௡ be a spiro hexagonal chain of length ݊. Then  
ܵ)ܬ  ௡ܲ) ≤ (௡ܥܲܵ)ܬ ≤ ܵ)ܬ ௡ܱ)andܵܬ(ܵ ௡ܲ) ≤ (௡ܥܲܵ)ܬܵ ≤ ܵ)ܬܵ ௡ܱ), 
with equalities if and only if ܵܲܥ௡ = ܵ ௡ܱ and ܵܲܥ௡ = ܵ ௡ܲ, respectively.  

 

Theorem 9 also shows that ܵ ௡ܱ and ܵ ௡ܲ are the unique graph with the maximum 
and the minimum (sum-) Balaban index among all spiro hexagonal chains of length ݊. 
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