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ABSTRACT. A tiling of a surface is a decomposition of the surface into pieces, i.e. tiles, 
which cover it without gaps or overlaps. In this paper some special polygonal tiling of sphere, 
ellipsoid, cylinder, and torus as the most abundant shapes of fullerenes are investigated. 
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1. INTRODUCTION 

Fullerenes are a family of carbon allotropes which composed entirely of carbon, in the form 
of a sphere, ellipsoid, cylinder, or tube. The structure of fullerenes is composed of 
hexagonal, pentagonal or sometimes heptagonal and octagonal rings [1, 2, 3]. Other 
geometric shapes such as square and triangles can be found in the structure of fullerenes 
[4]. Some people study the structure of fullerene by graph theory [5, 6, 7]. We consider 
fullerenes as a polyhedron whose vertices, edges, and faces are atoms, chemical bond, and 
the rings respectively. So we can investigate its structure and the number of its polygons as 
a tiling of a surface. On the other hand, one can regard the fullerene as a 3 regular cubic 
graph. We compound these two views and use the Euler characteristic as a powerful tool to 
compute the number of a polygon in the structure of a fullerene, and the maximum number 
of possibility structure. We study the surfaces sphere, ellipsoid, cylinder and torus, because 
they are the most abundant shapes of fullerenes. It should be noted that our argument is a 
mathematical investigation, not a chemical analysis.  

This paper is prepared as follows. In Section 2, we introduce the Euler characteristic 
for polyhedrons and the d-regular edge-to-edge tiling, and state and prove some result about 
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this type of tiling. In section 3 we classify the tilings up to the type of polygons in the tiling. 
Section 4 gives some comments and remarks about the feature works on the concept of 
tiling and fullerenes. 
 
2. EULER CHARACTERISTIC AND TILING THE SURFACES 

Euler characteristic is one of the most important topological invariant (in fact a homotopy 
invariant) for surfaces, polyhedrons, polygons, and CW-complexes. Instead of its exact 
topological definition, we provide its definition for polyhedrons as we need. 

 

Definition 1. The Euler characteristic of a polyhedron M is defined as χ = V − E + F, 
where V, E, and F, are the number of vertices, edges, and faces in M respectively. 

 

 Two homeomorphic topological spaces have the same Euler characteristic, so in 
order to compute the Euler characteristic of a given surface, it is enough to compute the 
Euler characteristic of some polyhedron homeomorphic to it. For example since a 
tetrahedron and sphere are homemorphic, their Euler characteristics are equal. It is easy to 
see that the Euler characteristic of our desire surfaces, sphere and ellipsoid is 2, and of 
cylinder and torus is zero. We use this in our computations. We start by  some definitions 
an examples. 

 

Definition 2. An edge-to edge polygonal tiling of a surface is a covering of the entire 
surface by geodesics polygons, with no gaps our overlaps, such that the edge of a tile 
coincides entirely with the edge of a bordering tile. A tiling is said to be d-regular, if its 
corresponding graph is d-regular. We denote by ൣ(݇ଵ,݇ଶ, … , ݇௥), ൫݊௞భ ,݊௞మ , … , ݊௞ೝ൯൧ a tilling 
in which there is ݊௞೔  numbers of ݇௜-gons. 

 

Definition 3. Two d-regular edge-to-edge tiling ൣ(݇ଵ,݇ଶ, … ,݇௥), ൫݊௞భ ,݊௞మ , … ,݊௞ೝ൯൧ and 
ൣ(݇ଵ′,݇ଶ′, … ,݇௥′), ൫݊௞భᇱ, ݊௞మᇱ, … ,݊௞ೝᇱ൯൧ for the surface M are said to be polygonal similar if 
݇௜ = ݇௜′ for ݅ = 1, … ,  .ݎ

 

It is clear that polygonal similarity is an equivalence relation on the set of all tiling for a 
surface. 
 

Notation. The equivalence class corresponds to the tiling 
ൣ(݇ଵ,݇ଶ, … ,݇௥), ൫݊௞భ ,݊௞మ , … ,݊௞ೝ൯൧ is denoted by ܶ(݇ଵ, ݇ଶ, … , ݇௥). 

 

Example 4. The fullerene ܥ଺଴ is a 3regular edge-to-edge tilling for sphere containing 12 
pentagons and 20 hexagons. The representation of this tiling is [(5,6), (12,20)] and the 
corresponding equivalence class is ܶ(5,6). 
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Theorem 5. Let ൣ(݇ଵ,݇ଶ, … ,݇௥), ൫݊௞భ ,݊௞మ , … ,݊௞ೝ൯൧ be a dregular, edgetoedge tiling for 
a surface with Euler characteristic χ. Then 

෍൫(2 − ݀)݇௜ + 2݀൯݊௞೔

௥

௜ୀଵ

= 2߯݀.                                    (∗) 

Proof. The number of vertices, edges, and faces are: 
ܸ = ଵ

ௗ
൫݊௞భ݇ଵ + ⋯+ ݊௞ೝ݇௥൯, ܧ = ଵ

ଶ
൫݊௞భ݇ଵ + ⋯+ ݊௞ೝ݇௥൯, ܨ = ݊௞భ + ⋯+ ݊௞ೝ . 

So,  

߯ =
1
݀
൫݊௞భ݇ଵ + ⋯+ ݊௞ೝ݇௥൯ −

1
2
൫݊௞భ݇ଵ + ⋯+ ݊௞ೝ݇௥൯ + ݊௞భ + ⋯+ ݊௞ೝ , 

implying that 

2߯݀ = ෍൫(2 − ݀)݇௜ + 2݀൯݊௞೔

௥

௜ୀଵ

. 

 
 In the rest of this paper all tiling are supposed to be 3- regular and edge-to edge as 
the fullerenes.  

 
Corollary 6. For every spherical fullerene with tiling ൣ(݇ଵ,݇ଶ, … ,݇௥), ൫݊௞భ ,݊௞మ , … ,݊௞ೝ൯൧,  
we have  

෍(6 − ݇௜)݊௞೔

௥

௜ୀଵ

= 12. 

The same result for cylinder and torus is:  

෍(6− ݇௜)݊௞೔

௥

௜ୀଵ

= 0. 

 
Proof. We know that fullerenes are 3-regular tiling (d=3). In the case sphere by letting 
߯ = 2 in the equation (∗) we have 

12 = ෍൫(2 − 3)݇௜ + 6൯݊௞೔ = ෍(6− ݇௜)݊௞೔

௥

௜ୀଵ

௥

௜ୀଵ

. 

The same result for cylinder and torus is obtained by taking ߯ = 0. 
  

By using previous corollary one can show that in every tiling of clas ܶ(5,6)s for 
sphere or ellipsoid the number of pentagons is exactly 12, since  

12 = (6 − 5)݊ହ + (6 − 6)݊଺ = ݊ହ. 
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Using a similar argument, the number of tetragons in a ܶ(5,6) tiling for sphere or ellipsoid 
is 6, and the number of triangles in a ܶ(5,6) tiling is 4. It is also easy to show that there is 
no tiling of classܶ(݇, 6), ݇ ≠ 6, for cylinder or torus. 

 
Theorem 7. If there exists a tiling of class ܶ(5,7) or ܶ(5,6,7) for cylinder or torus, then the 
number of pentagons is equal to the number of heptagons. If we have such tiling for sphere 
or ellipsoid, then the number of pentagons is 12 more than the number of heptagons. 
 
Proof. For cylinder and torus we have 

0 = (6 − 5)݊ହ + (6− 6)݊଺ + (6− 7)݊଻ ,    ⇒     ݊ହ = ݊଻. 
Similarly in the case of sphere and ellipsoid, 

12 = (6− 5)݊ହ + (6− 6)݊଺ + (6 − 7)݊଻ ,    ⇒     ݊ହ = 12 + ݊଻. 
 Applying this technique we can compute or predict the number of some special 
polygons in a tiling, or determine the possibility existence of some classes of tiling. For 
example there is no ܶ(6,7) tiling for sphere, ellipsoid, cylinder, and torus; For sphere and 
ellipsoid we get to the contradiction ݊଻ = −12, while for torus and cylinder we obtain 
another contradiction, ݊଻ = 0.  

 
3. CLASSIFY THE TILINGS  

In this section we will go on and investigate the tiling of classes ܶ(݇ଵ), ܶ(݇ଵ, ݇ଶ), 
ܶ(݇ଵ,݇ଶ, ݇ଷ) and ܶ(݇ଵ,݇ଶ, ݇ଷ, ݇ସ), for  ݇௜ ∈ {3,4,5,6}. The same argument can be done for 
more number namely 7, 8, etc.  

 
3.1  Classes with One Polygon. 
For a tiling of class ܶ(݇) the equation (∗) is (6− ݇)݊௞ = 6߯ . The possible solutions for 
sphere are ݇ = 3,4,5. Torus and cylinder have no tiling T(k) for ݇ ≠ 6. These results are 
presented in the following table. 
 
 

 
Sphere and Ellipsoid Cylinder and Torus 

Equation ݊௞ Tiling Equation ݊௞ Tiling 

T(3) 3݊ଷ = 12 4 tetrahedron 3݊ଷ = 0 0 ---- 

T(4) 2݊ସ = 12 6 cube 2݊ସ = 0 0 ---- 

T(5) ݊ହ = 12 12 dodecahedron ݊ହ = 0 0 ---- 

T(6) ---- ---- ---- 0݊଺ = 0 ? ? 
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3.2 The Classes with 2 Polygons. 

By simple calculation one can see that there is no ܶ(݇ଵ,݇ଶ) tiling for cylinder and torus for 
݇௜ ∈ {3,4,5,6}, because we get the unacceptable solution ݊௞ = 0 for ݇ = 3,4,5. So we only 
can tile the sphere or ellipsoid with two types of polygons. The following table presents 
these tilings. 
 

ܶ(݇ଵ,݇ଶ) 

Sphere and Ellipsoid 

Equation (݊௞భ,݊௞మ) 
The Maximum 

number of Tiling 

T(3,4) 3݊ଷ + 2݊ସ = 12 (2,3) 1 

T(3,5) 3݊ଷ + ݊ହ = 12 (1,9), (2,6), (3,3) 3 

T(3,6) 3݊ଷ + 0݊଺ = 12 (4,?) ? 

T(4,5) 2݊ସ + ݊ହ = 12 (1,10), (2,8), (3,6), (4,4), (5,2) 5 

T(4,6) 2݊ସ + 0݊଺ = 12 (6,?) ? 

T(5,6) ݊ହ + 0݊଺ = 12 (12,?) ? 

 
3.3 The Classes with 3 Polygons 

Same calculation as above shows that the cylinder and torus have no ܶ(݇ଵ,݇ଶ, ݇ଷ) tiling. 
But for sphere and ellipsoid equation (∗) have various solutions. 

 
 

ܶ(݇ଵ,݇ଶ, ݇ଷ) 

Sphere and Ellipsoid 

Equation (݊௞భ , ݊௞మ ,݊௞య) 
The Maximum 

number of 
Tiling 

T(3,4,5) 3݊ଷ + 2݊ସ + ݊ହ = 12 
(1,1,7),(1,2,5),(1,3,3), 
(1,4,1),(2,1,4),(2,2,2), 
(3,1,1) 

7 

T(3,4,6) 3݊ଷ + 2݊ସ + 0݊଺ = 12 (2,3,?) ? 
T(3,5,6) 3݊ଷ + ݊ହ + 0݊଺ = 12 (1,9,?),(2,6,?),(3,3,?) ? 

T(4,5,6) 2݊ସ + ݊ହ + 0݊଺ = 12 
(1,10,?),(2,8,?),(3,6,?), 
(4,4,?), (5,2,?) 

? 
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3.4 Classes with 4 Polygons 

The only class with 4 types of polygons is T(3,4,5,6) with corresponding equation  
3݊ଷ + 2݊ସ + ݊ହ + 0݊଺ = 12. In such tiling the number of hexagons is not constant. The 
number of other polygons is presented in the following table. 

 

 

Sphere and Ellipsoid 

Equation (݊ଷ, ݊ଷ, ݊଺, ݊଻) 

The 
Maximum 
number of 

Tiling 

T(3,4,5,6) 3݊ଷ + 2݊ସ + ݊ହ + 0݊଺ = 12 

(1,1,7,?),(1,2,5,?), 
(1,3,3,?),(1,4,1,?), 
(2,1,4,?),(2,2,2,?), 
(3,1,1,?) 

? 

 
 

4. MORE COMMENTS 

We only considered some fullerenes which contain triangles, squares, pentagons, and 
hexagons. Same argument can be done for ones that contain heptagons and octagons. In the 
last case the solutions for equation (∗) is more various. For example for the class T(3,7) the 
equation 3݊ଷ − ݊଻ = 12 has infinite solutions such as (5,3), (6,6),(7,9), etc.  . But whether 
these tilings are exist or not is another problem. This research and study can be continued to 
illustrate various tiling for several surfaces with arbitrary Euler characteristic.  
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