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ABSTRACT. The k-th semi total point graph of a graph G, R*(G) , is a graph obtained
from G by adding k vertices corresponding to each edge and connecting them to the
endpoints of edge considered. In this paper, a formula for Laplacian polynomial of R*(G)

in terms of characteristic and Laplacian polynomials of G is computed, where G is a
connected regular graph. The Kirchhoff index of R*(G) is also computed.

Keywords: Resistance distance, Kirchhoff index, Laplacian spectrum, derived graph.

1. INTRODUCTION

Let G =V (G),E(G)) be a simple connected (n,m)—graph with vertex set
V(G)={v,v,,...,v,} and edge set E(G)={e,e,,...,e,}. The adjacency and
incidence matrices of G are denoted by A(G) and B(G), respectively. The eigenvalues
A (G) =2 4,(G)>...2 1,(G) of G are the eigenvalues of 4(G). Let d; be the degree
of vertex v, e V(G) and D(G) = diag(d,.d,,...,d,) be the diagonal matrix of G.
The matrix L(G) = D(G) — A(G) 1is called the Laplacian matrix of G and its
eigenvalues are called the Laplacian eigenvalues of G. By a well-known result in
algebraic graph theory it is possible to order the Laplacian eigenvalues of G as
1(G) 2 1,(G) > ... 2 u,(G) = 0. Also, the polynomials ¢G(A)=det(rl,, —A(G))
and pG(A)=det(\l,, —L(G)) are called the characteristic and Laplacian polynomials

of G, respectively. Moreover, the distance between vertices v, and v,, denoted by d,

is the length of a shortest path connecting them. The Wiener index is the first graph
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invariant applicable in chemistry based on distance in a graphs [10], which counts the
sum of distances between pairs of vertices in the graph.
In 1993, Klein and Randi¢ defined a new distance function named resistance

distance in terms of electrical network theory [6]. If v, and v, are vertices of G then
the resistance distance between these vertices are denoted by 7, . This new distance is an
effective resistance between nodes v; and v; according to Ohm's law. Notice that all the
edges of G are considered to be unit resistors. The summation of all resistance
distances between pair of vertices, Kf (G)=3;< JTij > is called the Kirchhoff index of
G[1].

Suppose R(G) denotes a graph constructed from G by adding a new vertex
corresponding to each edge and connecting it to the endpoints of edge considered. This
graph is called the semi total point graph. In Figure 1, a graph G and its semi total graph
are depicted. Jog et al. [5], introduced a k—step generalization of R(G), denoted by
R*(G). To define, we assume that G is a simple graph of order n possessing m edges
and k is a natural number. The k —th semi total point graph of G, denoted by R*(G),

is the graph obtained by adding k vertices to each edge of G and joining them to the
endpoints of the respective edge. Obviously, this is equivalent to adding k triangle to
each edge of G . Clearly, this graph has order n + mk containing (1 + 2k)m edges. In

Figure 2, the graphs G and R*(G) are depicted.

(a) (b)

Figure 1. (a) The Graph G. (b) The Graph R(G).

2. THE LAPLACIAN POLYNOMIAL OF R*(G)

Let G be a regular graph. In [9], the Laplacian polynomial R(G) is determined by the
characteristic and the Laplacian polynomials of G . The characteristic polynomial of

R*(G)calculated in [5]. In this section, we use a similar method to calculate the
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Laplacian polynomial of R*(G), for k > 2. The following two results are crucial
throughout this paper.

Theorem 1. ([5]) If G is aregular graph of order » and degree r, then for any £ > 1,
the characteristic polynomial of the k —th semi total pointgraph R*(G) is given by
A —kr
A+k

H(R"(G), ) = 1" (A + k)" 4(G, )

where m = % is the number of edges of G .

Lemma 2. ([2]) Let M be a non—singular square matrix. Then

dget [ M N detm dero- PrIN
e P 0 =de et(Q ).

(a) (b)

Figure 2. (a) The Graph G. (b) The k—th Semi Total Point Graph for k = 3.

Theorem 3. Let G be a connected » —regular graph with n vertices and m edges.
Then

W2 Ak +r+2)+ r(k+2)

(i) uRk(G)(M=(7»—2)"”‘_”(“2—“"4’(?( k+2-1 )
2

) i ‘e 32 —A(kr +2)

(i) gk () = 0= 0.~k =) g (T,
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Proof. (i). Let A(G) and B(G) be the adjacency and incidence matrices of G,

respectively, and /, be a unit matrix of order n. By [5], the adjacency and distance

matrices of R*(G) can be computed as follows:
0 I 21 0
ARG =] ™ ; D(R"G) =| ™ ,
I AG) 0 ((k+Dn,
where I' = (B(G), B(G),..., B(G)) and I'T" = kA(G) + krl,. Then we have:

k times

oo (21, r
LE(G) = (— r  (kr+nI, - A(G)J'
So,
g DI T
%) = det
MRk ()M e L T k-, +A(G)J
= (L =2)"k ded (L~ kr— 1)1, +A(G)—F%FtJ
= (L =2)"K det (n —kr— ), + AG) - %j
(o 2yk go =20k =)y +(k—2)A(G)—kA(G)—krlnj
"2
=L =27 Get (= 2)(h — k= 1) — k)L, — AGY(k +2 1))
= (= 2)"K (2= )" det[o‘ . 2)53:2":” LUy A(G)j. )
Thus,
2
_ ¢y mk—n R/ A =Mkikr+r+2)+r(k+2)
bk () ()= 0= 42229 ] )
(i1). By considering L(G) = D(G) — A(G) in (1), we have:
2 - VT+r r
T R O B e VAR (0)
2
—(L—2)Mkn o )" det(%ln —(rl,, - A(G))).
W2 0k +2)

So, uRk(G)(l):(k—Z)mk_n(k—k—2)nug( ), and the proof is

completed.

A—k-=2
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3. THE KIRCHHOFF INDEX OF R*(G)

In this section, we will compute the Kirchhoff index of R“(G), G is regular, by using

the results obtained in the previous section. Gutman and Mohar [4] and Zhu [12] proved
the following relationship between the Kirchhoff and the Laplacian eigenvalues of a
graph:

Lemma 4. ([4, 12]). Let G be a connected graph with n > 2 vertices. Then

K/ (G) = nzi

i=1 i
Let &, be the degree of vertex v, € V(G). Zhou and Trinajsti¢ [11] proved that:

Lemma 5. Let G be a connected graph with n» > 2 vertices. Then

Kf(G)=-1+(n-1) >, 1

e 0;

with equality attained if and only if G = K, or G = K, , for 1 <7 < LgJ

Gao, Luo and Liu in [3] obtained the Kirchhoff index of a graph G in terms of
coefficients of the Laplacian polynomials as follows:

Lemma 6. [3]. Let G be a connected graph with »n>2 vertices and
oA =A"+aA"" +...+a, A.Then

Kf(G) _ ap—
P . (ap-

2 =1 whenever n=12).

Theorem 7. Let G be a connected » —regular graph with n vertices. Then

(kr +2)* KF(G) + (n* — n)(kr + 2) N n*(k*r* —4) .

KR =02 2k + 2) 8 2

Proof. Suppose that (A1) =" +a A" +...+a, ,A* +a, A Thenby Theorem 3
(i),
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A—k-2
+an{zﬁnum+2q +%lfﬁ—zmr+mj}

A—k=-2 A—k-2
(A=A = A+ 2)) o a, (A = Ak + 2)) (A — k= 2)"
ta, (2= A+ YA —k-2)""]

o) = (A= D™ A~k =277 x Kw] +

Suppose that C, and C, are the coefficients of 1 and A* in p, G

respectively. Then,
Ch = ()" gy, (~(hr + 2)(~(k +2))" 7,
O ="y o+ 22 (k20" 2 (G4 2)"
a1 (2= Dk +2) "2 |
+ (2K ke — )y (~(kr + 2))(~(k+2)"
By Lemmas 4 and 6, we have:

KR©G) __Ch_ _a

n

L, kr+2 1 n—1 mk-n
. + + + .
k+2 kr+2 k+2 2

n+ mk CL el
So,
KF (R (G)) = 4,y (kr+2)(n + mk) L + mk N (n = 1)(n + mk)
a, (k+2) kr + 2 k+2
mk* — n’
+
2
_ (kr+2)(n+mk)Kf(G)Jr n+ mk N (n —1)(n + mk)
n(k + 2) kr + 2 k+2
m’k* —n’
L —
2
Now by substituting m = % in the above equation the proof is completed. =

In what follows, we give a lower bound for the Kirchhoff index of R*(G), when

G is a connected regular graph.

Corollary 8. Let G be a r—regular graph with n vertices. Then,
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(kr +2)*(n* = n—r) N (n* = n)(kr + 2) N n*(k’r* —4) Ln

K(®(G) = 2r(k + 2) 2k +2) 8 2

with equality attained if and only if G = K, or G = K, , and n is even.
59

N

Proof. By Lemma 5 and Theorem 7, we have:

(kr+2)2 120D, (n? —n)(kr +2) N n?(k2r% — ) N

k
Kf (R (G2 2k +2) r 2k +2) 8 2

(kr+2)2(n® —n—r) N (n? —n)(kr+2) . n2 (k22— 4 N
2r(k +2) 2(k+2) 8 2

b

proving the result. Clearly, this equality is attained if and only if G = K, or

G=Ky/2,n/2 and n is even. -

4. EXAMPLES

The aim of this section is to compute the Kirchhoff index of k£ —th semi total point
special connected regular graphs.

Example 9. The complete graph K,, n>2. It is well known that K  is
(n —1)-regular and Kf(K,) = n —1. Hence,

(n? —n)(k(n—-1)+2)

2
k _(k(n=-D+2)
Kf (R (K”))_—z(k+2) Kf(Ky)+ 20k +2)
+n2(k2(n—1)2—4)+£
8 2
K2 =12 k(=1 (n+4)+2(n—-1)(n+2) +k2(n2 — )% —4n(n-1)
B 2(k+2) 8 '

Example 10. The complete bipartite graph K, ,. It is well known that K, is
n—regular graph with 2n vertices. By [3], Kf (K, ,) = 4n —3, and so

(kn+2)2

2 2,22
k ~ (@n)° —Q@n)(kn+2)  (2n)“(k“n“=4) 2n
K7 (R (Kn’n))_—Z(k+2) Kf (Kp,n)+ 2k+2) + 3 + >
(kn+2)((kn+2)(4n —3) + 4n? - 2n) N 4n (k2n? —4)+8n
- 2(k+2) 8 '
Example 11. The cycle C,. By [8] Kf(C,) = n —n and so,
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2 2 20422 _
Kf(Rk(Cn))=(2k+2) Kf(Cn)+(n M2k+2) @4k -4) n

2(k+2) 2(k+2) 8 2
C(k+1)2 —n)+(k+l)(n2 —n)+n2(k2 4n
6k +2) k+2 2 '

Example 12. The hypercube Q,. In [7], Liu et al. proved that O, is n—regular graph
Ci
with 2" vertices and Kf(O,)= 2" Z;?_lz—’_q,
=1 2i
1<i<mn, are the eigenvalues of the Laplacian matrix of the hypercube. Here,
C,i ,1 <i < n, denotes the binomial coefficients. Hence,

where 2i with multiplicities C!,

2 n,An n\2,.2 2 n
k _ (kn+2) TR -D))kn+2) Q") (k" n°-4) 2
Kf (R (Q”))_—z(k+2) Kf(On)+ 2k+2) + S 5

-l (kn +2)2 g C_,’;Jr 212 1)k +2) N 220 (k22 _gy4 2712
(k+2) ;= 2i k+2 8 '

Example 13. The cocktail-party graph CP(n). The cocktail-party graph CP(n) is an

2 12
(2n—2)-regular graph with 2n vertices and Kf(CP(n)) = =)

that,

. This shows

_ 2 _ _
Kf(Rk(CP(n))) _ ((2n-2)k+2) KF(CP(n)+ 2n(2n-1))((2n-2)k +2)

2(k+2) 2(k+2)
N Qn)2 (k2 (2n-2)% —4) Lo
8 2
_(@n-2k+2)? n?4@m-1)? , (2120 =D)(2n -2k +2)
2k +2) n—1 2(k+2)

22 (k2 (n=-1)% 1) +n,
which completes our argument.

ACKNOWLEDGMENT. I am very pleased from the language editor of IJMC for
several corrections on my paper.

REFERENCES

1. D. Bonchev, A. T. Balaban, X. Liu and D. J. Klein, Molecular cyclicity and
centricity of polycyclic graphs, I: cyclicity based on resistances or reciprocal
distances, Int. J. Quantum Chem. 50 (1994) 1-20.

2. F. R. Gantmacher, Theory of Matrices I, Chelsea, New York, (1960).



The Laplacian polynomial and Kirchhoff index of total point graphs s15

3.

10.

11.

12.

X. Gao, Y. F. Luo and W. W. Liu, Kirchhoff index in line, subdivision and total
graphs of a regular graph, Discrete Appl. Math. 160 (2012) 560-565.

I. Gutman and B. Mohar, The quasi—Wiener and the Kirchhoff indices coincide,
J. Chem. Inf. Comput. Sci. 36 (1996) 982—-985.

S. R. Jog, S. P. Hande, 1. Gutman and B. Bozkurt, Derived graphs of some
graphs, Kragujevac J. Math. 36 (2012) 309-314.

D. J. Klein, M. Randi¢, Resistance distance, J. Math. Chem. 12 (1993) 81-95.

J. Liu, J. Cao, X.—F. Pan and A. Elaiw, The Kirchhoff index of hypercubes and
related complex networks, Discrete Dyn. Nat. Soc. DOI:10.1155/2013/5431809.
I. Lukovits, S. Nikoli¢ and N. Trinajsti¢, Resistance distance in regular graphs,
Int. J. Quant. Chem. 71 (1999) 217-225.

W. Wang, D. Yang and Y. Luo, The Laplacian polynomial and Kirchhoff index
of graphs derived from regular graphs, Discrete Appl. Math. 161 (2013)
3063-3071.

H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem.
Soc. 69 (1945) 17-20.

B. Zhou and N. Trinajsti¢, A note on Kirchhoff index, Chem. Phys. Lett. 455
(2008) 120-123.

H.—Y. Zhu, D. J. Klein and I. Lukovits, Extensions of the Wiener number, J.
Chem. Inf. Comput. Sci. 36 (1996) 420—428.



