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Betweenness centrality is a distance-based invariant of 
graphs. In this paper, we use link and lexicographic 
products to compute betweenness centrality of some 
important classes of graphs. Finally, we pose some 
open problems related to this topic. 
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1 INTRODUCTION 

All graphs in this paper are finite and simple. A graph G is an ordered pair (VG, EG) 
consisting of a set VG of vertices and a set EG, disjoint from VG, of edges, together 
with an incidence function fG that associates with each edge of G an unordered pair 
of (not necessarily G distinct) vertices of G. A path in a graph is a finite or infinite 
sequence of edges which connect a sequence of vertices which are all distinct from 
one another. The distance dG(u, v) between the vertices u and v of a graph G is 
equal to the length of a shortest path that connects u and v. 

The betweenness centrality, BG, was first introduced by Bavelas [3] as the 
number of times a node acts as a bridge along the shortest path between two other 
nodes. In other words, for a vertex vVG, (ݒ)ீܤ = ∑ ಸ

ೡ (ೞ,)
ಸ(ೞ,)௦ஷ௩ஷ௧∈ಸ , where Gσ (s,t) 
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is total number of shortest paths from node s to node t and v
Gσ (s,t) is the number of 

those paths that pass through v [7]. 
This invariant has important role in Psychology to study on mental 

illnesses. We encourage readers to see [6, 8, 9, 12 − 17] for the role of betweenness 
centrality in analysis of social networks, computer networks, and many other types 
of network data models. 

The lexicographic product G[H] of graphs G and H, studied first by Felix 
Hausdor in 1914, is the graph with vertex set VG×VH and (g1, h1) is adjacent with 
(g2, h2) whenever (g1 is adjacent to g2) or (g1= g2 and h1 is adjacent to h2). We 
encourage the reader to consult the book Handbook of Product Graphs, written by 
Hammack, Imrich and Klavžar, for more information on results on this product. 

Suppose G and H are graphs with disjoint vertex sets, x  VG and y  VH. A 
link of G and H by vertices y and z is a graph operation defined as the graph 
(GH)(x; y) obtained by joining x and y by an edge in the union of these graphs, 
see [2, 5]. Let VG = {v1, v2, …, vn}. The adjacency matrix A(G) = [aij] is an n×n 
matrix for which aij=1 if vivj  EG and aij=0 otherwise [10]. 

The degree of a vertex v in G is denoted by degG(v). We use NG[v] to 
denote the ball of radius one centered at the vertex v in G. Also, we use the 
notations Pn, Cn and Kn to denote the path, cycle, complete graph with n vertices, 
respectively. Our other notations are standard and taken mainly from the standard 
books of graph theory such as [4]. 
 
2.  BETWEENNESS CENTRALITY UNDER LEXICOGRAPHIC AND 
            LINK PRODUCTS 

In this section, we compute the betweenness centrality of link and lexicographic 
products from the betweenness centrality of their initial factors. 
 
Theorem 2.1. Let (g, h) be a vertex of G[H]. Then  
 BG[H]((g,h)) = |VH|BG(g)+ భ

|ೇಹ|ቆቀ
|ಹ|
ଶ ቁି|ாಹ|ି∑ ூ(ೕ

(మ))భರಬೕರ|ೇಹ| ቇ∑ భ
ಸ(ᇲ)ᇲ∈ಶಸ  

                                    + ∑ భ
หೇಹหಸ൫ᇲ൯శಹ(ᇲ,")ᇲ∈ேಸ[],ௗಹ(ᇲ,")ୀଶ  

where  2
ija  is ij-th entry of A2(G) and I(x) = 



 

otherwise1
0xif0 . 

 
Proof.  Let (g, h), (g1, h1) and (g2, h2) be three different vertices of G[H]. Thus, 
there are four cases in which ீߪ[ு]

(,)((݃ଵ,ℎଵ), (݃ଶ,ℎଶ)) ≠ 0, as follows: 
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1. g1= g2=g and dH(h1, h2) = 2. Then  HGσ ((g1, h1), (g2, h2)) = |VH|degG(g) +

Hσ (h1, h2) and ீߪ[ு]
(,)൫(݃ଵ, ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଵܤ                               = ∑ భ
หೇಹหಸ()శಹ(భ,మ)భ,మ∈ಹ,ௗಹ(భ,మ)ୀଶ . 

2. g1=g2, gg1EG and dH(h1, h2) = 2. Then  HGσ ((g1, h1), (g2, h2)) = 

|VH|degG(g1) + Hσ (h1, h2) and ீߪ[ு]
(,)൫(݃ଵ, ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଶܤ                               = ∑ భ
หೇಹหಸ(ᇲ)శಹ(భ,మ)భ,మ∈ಹ ,ௗಹ(భ,మ)ୀଶ,ᇱ∈ாಸ . 

3. g1=g2, gg1EG and dH(h1, h2) > 2. Then  HGσ ((g1, h1), (g2, h2)) = 

|VH|degG(g1) and ீߪ[ு]
(,)൫(݃ଵ,ℎଵ), (݃ଶ, ℎଶ)൯ = 1. Set  

ଷܤ  = ∑ భ
หೇಹหಸ(ᇲ)భ,మ∈ಹ ,ௗಹ(భ,మ)வଶ,ᇱ∈ாಸ

 
and so B3= భ

|ೇಹ|ቆቀ
|ಹ|
ଶ ቁି|ாಹ|ି∑ ூ(ೕ

(మ))భರಬೕರ|ೇಹ| ቇ∑ భ
ಸ(ᇲ)ᇲ∈ಶಸ . 

4. g1  g  g2 and dG(g1, g2)  2. Then 
|(g1, g2)ீߪ= ((g2, h2) ,(g1, h1))[ு]ீߪ ுܸ|ௗಸ(భ,మ)ିଵ,  
[ு]ீߪ

(,)((g1, h1), (g2, h2)) =ீߪ
(g1, g2) | ுܸ|ௗಸ(భ,మ)ିଶ

. 

Set B4=∑
ಸ
(ᇲ,")|ೇಹ|ಸ(ᇲ,")షమ

ಸ (ᇲ,")|ೇಹ|ಸ(ᇲ,")షభ{భ,మ}ಹ ,ௗಸ(ᇲ,")ஹଶ  
 
and so  B4=|VH|BG(g).  

Therefore, by summation of B1, B2, B3 and B4 , the result can be proved.                � 
 
Corollary 2.1. If (g, h) is a vertex of G[Cn] and n > 4, then 

൫(݃,ℎ)൯[]ீܤ = (݃)ீܤ݊ + షఱ
మ ∑ భ

ಸ(ᇲ)
శ∑ భ

ಸ൫ᇲ൯శభᇲ∈ಿಸ[]ᇲ∈ಶಸ . 

Also, if G is a k-regular graph, we have 
൫(݃,ℎ)൯[]ீܤ = (݃)ீܤ݊ + (ାଵ)

ାଵ
ାషఱమ . 

 
Corollary 2.2. Let (g, h) be a vertex of G[C4], then 

,݃)൫[ర]ீܤ ℎ)൯ = (݃)ீܤ4 + 2∑ భ
రౚౝ൫ᇲ൯శమᇱ∈ேಸ[] . 

Moreover, if G is a k-regular graph, then 
,݃)൫[ర]ீܤ ℎ)൯ = (݃)ீܤ4 + ାଵ

ଶାଵ
. 

 
Corollary 2.3. If (g, h) is a vertex of G[C3], then ீܤ[య]൫(݃,ℎ)൯ =  .(݃)ீܤ3
 
Theorem 2.2. Let G and H be graphs with disjoint vertex sets, x  VG and y  VH. 
Then 
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(ݑ)(௫;௬)(ு~ீ)ܤ =

⎩
⎪
⎨

⎪
(ݑ)ீܤ⎧ + | ுܸ|  ఙಸ

ೠ(௧,௫)
ఙಸ(௧,௫)

௧∈ಸ

ݑ ݂݅ ∈ ܸீ

(ݑ)ுܤ + |ܸீ |  ఙಹ
ೠ(௧,௬)

ఙಹ(௧,௬)
௧∈ಹ

ݑ ݂݅ ∈ ுܸ

. 

 

Proof.  Supose u, s and t are three different vertices of (G ~ H)(x;y). There are two 
cases as follow: 
1. GVu . In this case, if s,t GV , then

ߪ(ீ~ு)(௫;௬)(ݏ, (ݐ = ,ݏ)ீߪ (௫;௬)(ு~ீ)ߪ and(ݐ
௨ ,ݏ) (ݐ = ,ݏ)௨ீߪ   (ݐ

and if s GV  and t HV , then  
ߪ(ீ~ு)(௫;௬)(ݏ, (ݐ = ,ݕ)ுߪ(ݔ,ݏ)ீߪ (௫;௬)(ு~ீ)ߪ and(ݐ

௨ ,ݏ) (ݐ = ,ݕ)ுߪ(ݔ,ݏ)௨ீߪ   .(ݐ
Note that if s,t HV , then ߪ(ீ~ு)(௫;௬)

௨ ,ݏ) (ݐ = 0. Therefore, 

B(G ~ H)(x;y)(u)=BG(u)+|VH|∑ ಸ
ೠ(,ೣ)

ಸ(,ೣ)௦∈ಸ . 

2. u HV . Using a similar argument applied in the first case, we have 
B(G ~ H)(x;y)(u)=BH(u)+|VG|∑ ಹ

ೠ (,)
ಹ(,)௧∈ಹ , 

which completes our proof.                                                                               � 
 
 

3. APPLICATIONS 

In this section, we apply our results to compute the betweenness centrality of some 
well-known graphs. 
 
Example 3.1. Consider the Catlin graph C5[C3] shown in Figure 1. Then 

∑ ቀܽܫ
(ଶ)ቁଵஸஸஸଷ = 0. On the other hand, by [20], ܤ(ݒ) = ቊ

భ
ఴ(ିଶ)మ       2|݊
భ
ఴ(ିଵ)(ିଷ) 2 ∤ ݊. 

Therefore, by Corollary 1.1, we have ܤఱ[య]൫(݃, ℎ)൯ = 3.  
 

 
 

Figure 1. The Catlin graph. 



Further Results on Betweenness Centrality of Graphs                                             161 

 

Example 3.2. Let G be the closed fence graph shown in Figure 2. It is clear that 
the lexicographic product of Cn and P2 is isomorphic to G. Then, by Theorem 1, 
we have 

(ݒ)ீܤ = (ݒ)[మ]ܤ = ቊ
భ
ర(ିଶ)మ       2|݊
భ
ర(ିଵ)(ିଷ) 2 ∤ ݊. 

 

 
 

Figure 2. Closed fence graph. 
 

Example 3.3. LetG be the open fence graph depicted in Figure 3. It is not 
difficult to check that G  Pn[P2] and ܤ(ݒଵ) = (݅ − 1)(݊ − ݅). Then, by 
Theorem 1, we have 

ீܤ ቀ൫݃, ℎ൯ቁ = [మ]ܤ ቀ൫݃ ,ℎ൯ቁ = 2(݊ − ݅)(݅ − 1). 
 

 
 

Figure 3. Open fence graph. 
 

The Wiener index, W, is equal to the sum of the lengths of the shortest 
paths between all pairs of vertices. Kumar and Balakrishnan [11] gave the 
following relation between the Wiener index and the betweenness centrality index 
for a graph G:  
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W(G) = ∑ ௩∈ಸ(ݒ)ீܤ + ቀ|ܸீ |
2 ቁ. 

 
Thus, we can use betweenness centrality instade of Wiener index. 

Therefore, if B(v) = B(u) for each u,v  VG, then (ݒ)ீܤ =
ೈ(ಸ)షቀ|ೇಸ|

మ
ቁ

|ೇಸ| . For example, 

Since ܤ(ݒ) = for each u,v  (ݑ)ܤ nCV , then ܤ(ݒ) = ೈ()షቀమቁ

 . 
 
Example 3.4. Consider the dendrimer D1 shown in Figure 4. As one can see in this 
figure, D1 = (G ~ H)(x; y). On the other hand, if u is the vertex of G shown in 
Figure 4, it is not difficult to check that BG(u) = 2 and ∑ ಸ

ೠ(,ೣ)
ಸ(,ೣ)௦∈ಸ = 0. Therefore, 

by Theorem 2, we have 1DB (u) = B(G~H)(x;y)(u) = 2. Also, by the previous 

argument, 

W(D1)=∑ ௨∈ವభ(ݑ)భܤ
+ ൬| ܸభ|

2
൰. 

Using a similar argument, ܤ(ݑ) = 2, where u is the vertex of Dn shown in 
Figure 4. 
 

 
 

Figure 4. Dendrimers D1 and Dn. 
 
Example 3.5. A k-almost tree is a graph in which each biconnected component is 
obtained by adding at most k edges to a tree. Akutsu and Nagamochi [1] studied 
these graphs as an example of chemical graphs. 
 Consider graph G, graph H and the almost tree  shown in Figure 5. As one 
can see,  = (GH)(x;y). Then, by Theorem 2 and this fact that BG(u)= 2

1 , we have 

B(u)=B(GH)(x;y)(u)= 2
1 . 
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Figure 5. The almost tree . 
 
Example 3.6. For handcuffs graph Cn Cm, we have 
 
 

(ݑ)(௫;௬)(~)ܤ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

ଵ
଼

(ିଶ)మା 

ೠ (,ೣ)

(,ೣ)
∈ೇ

         

ଵ
଼

(ିଵ)(ିଷ)ା 

ೠ (,)

(,ೣ)
∈ೇ

   

ଵ
଼

(ିଶ)మ + ݊  ఙ
ೠ (௧,௫)

ఙ(௧,௫)
௧∈

 

ଵ
଼

(ିଵ)(ିଷ)ା  ఙ
ೠ (௧,௬)

ఙ(௧,௫)
௧∈

ݑ ݂݅ ∈ ܸ   &  2|݊

ݑ ݂݅ ∈ ܸ   &  2 ∤ ݊

ݑ ݂݅ ∈ ܸ   &  2|݉

ݑ ݂݅ ∈ ܸ   &  2 ∤ ݉

 

 
4. OPEN PROBLEMS 

In this section, we pose two open problems to develop the topic of betweenness 
centrality on other graph operations. The tensor product G  H of graphs G and H 
is the graph with vertex set VG × VH and (g1, h1) is adjacent with (g2, h2) whenever 
(g1 is adjacent to g2) and (h1 is adjacent to h2), see [10, 18] for details. The strong 
product G  H of graphs G and H is the graph with vertex set VG×VH and (g1, h1) 
is adjacent with (g2, h2) whenever (g1 is adjacent to g2 and h1 = h2) or (h1 is 
adjacent to h2 and g1 = g2) or (g1 is adjacent to g2 and h1 is adjacent to h2), see [10, 
19]. 
 We end this paper by the following two open questions: 
 

1. Let G and H be two graphs and (g, h) be a vertex of G  H. What is the 
value of BG H((g,h))? 
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2. Let G and H be two graphs and (g, h) be a vertex of G   H. What is the 
value of BG H((g,h))? 
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