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1. INTRODUCTION  

All graphs considered in this paper are connected, undirected and finite without loops and 
multiple edges. Denoted by V(G) and E(G), we mean the set of vertices and the set of 
edges of graph G, respectively. 

A topological index is a kind of molecular descriptor which anticipates some 
properties of chemical compound. Many topological indices were defined and many 
properties are discovered. Furtula and Gutman[2] introduced the forgotten index which is 
a special case of general first Zagreb index and studied its basic properties. In this paper 
some application of forgotten index in chemistry is also presented and the authors proved 
that this index can significantly enhance the physico-chemical applicability of the first 
Zagreb index. We refer to [3] for more information about this graph invariant. 
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The real number λis called the eigenvalue of a graph Г with adjacency matrix Aif the 
equation Ax=λxhas a nonzero solution. A solution vfor this equation is called eigenvector 
corresponding to the eigenvalue λ. The characteristic polynomial of the matrix A is defined 
as(G) = det(A −I). It is easy to see that the eigenvalues of A are roots of(G).  

 
2. NOTATION AND DEFINITIONS 

There are two types of Zagreb indices introduced by Gutman and Trinajestic[12]: the first 
Zagreb index M1 and the second Zagreb index M2 defined as follows: 

ଵܯ = (ܩ)ଵܯ = ∑ (ீ)ଶ௨∈(ݑ)݀  and ܯଶ = (ܩ)ଶܯ = ∑ (ீ)௨௩∈ா(ݒ)݀(ݑ)݀ , 
where du denotes the degree of vertex u, see [1,4,7,9]. The first Zagreb index can be 
rewritten also as ܯଵ = (ܩ)ଵܯ = ∑ (ݑ)݀] + (ீ)௨௩∈ா[(ݒ)݀ . For more details on these 
topological indices we refer to [7, 14−16, 18]. With this notation, the F- index is defined 
as [2,3,11,13] 

ܨ = (ܩ)ܨ = ∑ (ீ)ଷ௨∈(ݑ)݀ = ∑ ଶ(ݑ)݀] + (ீ)ଶ]௨௩∈ா(ݒ)݀ . 
In [5] the following three topological indices are proposed: 

ଵܫܶ  = (ܩ)ଵܫܶ = ∑ (ீ)௩∈(ݒ)ଵܨ ଵܫܶ , = (ܩ)ଵܫܶ = ∑ .ݑ)ଶܨ (ீ)௨௩∈ா(ݒ ,   
ଵܫܶ  = (ܩ)ଵܫܶ = ∑ .ݑ)ଷܨ (ீ)௨ஷ௩.{௨.௩}⊆(ݒ                                                    (1) 

where F1, F2 and F3 are functions dependent of a vertex or on a pair of vertices of the 
molecular graph G and forgotten index is of the form Equation 1.  
 
3. BOUNDS OF FORGOTTEN INDEX 

Let G be a graph on n vertices with maximum degree ∆, where ݊ ≥ 3. It is clear that 
5݉ ≤ ݀௨ଶ + ݀௩ଶ ≤ 2∆ଶ and thus 5݉ ≤ (ܩ)ܨ ≤ 2∆ଶ݉. The aim of this section is to 
compute some bounds for (ܩ)ܨ and then we present some algebraic properties of this 
index. Let A be the adjacency matrix of G and B is a symmetric matrix with the following 
entries: 

ܾ௨௩ = ൝
ଶ(ݑ)݀ + ݒݑ ݂݅     ଶ(ݒ)݀ ∈ (ܩ)ܧ

݁ݏ݅ݓݎℎ݁ݐ                                  0
. 

Lemma 2. We have  
i) (ܩ)ܨ ≤ ඥݎݐ(ܣଶ)݉/2, 
ii) ∑ ݀௨ଶ݀௩ଶ௨௩∈ா(ீ) ≥ ଵܯ

ଶ(ܩ)/݊ , 
iii) (ܤ)ݎݐ = 2 and ∑ (݀௨ଶ + ݀௩ଶ)ଶ௨௩∈ா(ீ) , 

iv) (ܩ)ܨ ≥ ට௧(మ)
ଶ

, 
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v) If G is r-regular, then (ܩ)ܨ = ଵ
ସమ

 .(ଶܤ)ݎݐ

Proof.  
i) It is not so difficult to see that  

(ܩ)ܨ = ∑ ൣ݀௨
ଶ + ݀௩

ଶ൧௨௩∈ா(ீ)  ≤ ට∑ ൫݀௨
ଶ + ݀௩

ଶ൯
ଶ

௨௩∈ா(ீ) ∙ ݉
భ
మ = ඥݎݐ(ܣଶ)݉/2, 

as desired. 
ii) According to geometrical-arithmetic inequality we have  

ଵܯ
ଶ(ܩ) = ൫∑ ݀௨ଶ௨∈(ீ) ൯ଶ ≥ ݊∑ ݀௨ଶ݀௩ଶ௨௩∈ா(ீ) . 

iii) Since every element in the main diagonal of B is 0, we obtain tr(B)=0 The i-th 

entry ܾ in the diagonal of ܤଶ is ܾ = ∑ ቂ݀௩
ଶ + ݀௩ೕ

ଶቃ
ଶ

௩௩ೕ∈ா(ீ) . Thus, ݎݐ(ܤଶ)  

= ∑ ܾ

ୀଵ = ∑ ∑ ቀ݀௩

ଶ + ݀௩ೕ
ଶቁ

ଶ
௨௩∈ா(ீ)


ୀଵ = 2∑ ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ
௨௩∈ா(ீ) . 

iv) By Lemma 1, ݎݐ(ܤଶ) = 2∑ ൫݀௨
ଶ + ݀௩

ଶ൯
ଶ

௨௩∈ா(ீ)  ≤ 2∑ ൫݀௨
ଶ +௨௩∈ா(ீ)

݀௩
ଶ൯∑ ൫݀௨

ଶ + ݀௩
ଶ൯௨௩∈ா(ீ) ≤  .(ܩ)ଶܨ2

v) If G is r-regular, then ܤ = (ଶܤ)ݎݐ and ܣଶݎ2 =  ,Hence .(ଶܣ)ݎݐସݎ4

(ܩ)ܨ = ଶ݉ݎ2 = ଶݎ2 × ଵ
ଶ
(ଶܣ)ݎݐ = ଵ

ସమ
 .(ଶܤ)ݎݐ

 
Denote by ߪଶ the variance of the sequence of the terms ൛݀௨

ଶ + ݀௩
ଶൟ appearing in 

the definition of F(G).  
 
Lemma 3. For any graph G, (ܩ)ܨ = ඥ݉/2ݎݐ(ܤଶ) −݉ଶߪଶ. 
 

Proof. Lemma 2 gives ଵ
ଶ
(ଶܤ)ݎݐ = ∑ ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ
௨௩∈ா(ீ) . By the definition of ߪଶ, we 

have 

ଶߪ =
1
݉  ൫݀௨

ଶ + ݀௩
ଶ൯

ଶ

௨௩∈ா(ீ)

− ൭
1
݉  ൫݀௨

ଶ + ݀௩
ଶ൯

௨௩∈ா(ீ)

൱
ଶ

=
1

(ଶܤ)ݎݐ2݉ −
1
݉ଶ  ଶ(ܩ)ܨ

and this equality yields the results. 
 
Lemma 4. Let ߤଵ ≥ ଶߤ ≥ ⋯ ≥   be all eigenvalues of B, then we haveߤ
i) ∑ ଶߤ

ୀଵ ≥ ݊)/ଵଶߤ݊ − 1). 

ii) ට


ଶ(ିଵ)
ଵߤ ≤ (ܩ)ܨ ≤ ଵ

ଶ
 .ଵ݊ߤ

 
Proof. Suppose  ߤଵ ≥ ଶߤ ≥ ⋯ ≥  . are the eigenvalues of Bߤ
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i) Since ∑ ߤ
ୀଵ = (ܤ)ݎݐ = 0, we have ߤଵ = −∑ ߤ

ୀଶ  and Cauchy-Schwarz 
inequality gives 

ଵଶߤ = (∑ ߤ
ୀଶ )ଶ ≤ (∑ ߤ

ୀଶ )ଶ(݊ − 1).  
Hence,  

∑ ଶߤ
ୀଵ = ଵଶߤ + ∑ ଶߤ

ୀଶ ≥ ଵଶߤ + ఓభమ

ିଵ
= ఓభమ

ିଵ
. 

ii) Suppose j is the vector ݆ = (1.1. … 1) ∈ ܴ. By Perron-Frobenius theorem we can 
conclude that ߤଵ ≥ หߤห, for every j, and then ߤଵ ≥ 0. Hence, Rayleigh quotient yields 

ଵߤ = ݔܽ݉ 〈௫.௫〉
‖௫‖మ

≥ 〈.〉
‖‖మ

= ଶி(ீ)


. 

According to Part (i), we have 

ଶ(ܩ)ܨ  = ൫∑ ൫݀௨
ଶ + ݀௩

ଶ൯௨௩∈ா(ீ) ൯
ଶ
≥ ∑ ൫݀௨

ଶ + ݀௩
ଶ൯௨௩∈ா(ீ) ≥ ଵ

ଶ
∑ ଶߤ
ୀଵ  

   = ଵ
ଶ

ଵଶߤ) + ∑ ଶߤ
ୀଶ ) ≥ ଵ

ଶ
ቀߤଵଶ + ఓభమ

ିଵ
ቁ = ఓభమ

ଶ(ିଵ)
. 

Assume now that G is a ∆-regular graph. Then ܤ = 2∆ଶܣ and ߤ = 2∆ଶߣ. It is 
well know that the greatest eigenvalue of a ∆-regular graph is ∆ itself. Hence, ߤଵ = 2∆ଶߣଵ 
and then (ܩ)ܨ = 2∆ଶ݉ = ∆ଶ∆݊ = ݊∆ଶߣଵ = 

ଶ
  .ଵߤ

 
4. SPECTRAL PROPERTIES 

For given graph G, if the maximum degree of every vertex reaches to four, then G is called 
a molecular graph. The first inverse sum indeg index (ISI index) defined as follows [17]: 

(ܩ)ܫܵܫ = ∑ ௗೠௗೡ
ௗೠାௗೡ௨௩∈ா(ீ) . 

Let V(G)= {v1,v2,...,vn} be the vertex set of graph G. For 1, 2, ...,n, let di be the degree of 
the vertex vi. Then define the ISI adjacency matrix PA to be a matrix with entries bij as 
follows: 

ܾ = ൞

ௗௗೕ
ௗାௗೕ

ݒݒ                        ∈ (ܩ)ܧ

݁ݏ݅ݓݎℎ݁ݐ                                  0

. 

If the graph G is regular of degree r, then ܲ(ܩ)ܣ = 
ଶ
 and (ܩ)ܣ

(ܩ)ଶܣܲ = ଵ
ସ
 (2)                                                  .(ܩ)ଶܣଶݎ

 
Example 1. Let Gbeanr-regular graph. Since ݎݐ(ܣଶ) = 2݉, we have ݎݐ(ܣଶ(ܩ)) =  .ݎ݊
This means that ݎݐ(ܲܣଶ(ܩ)) =   .ଷ/4ݎ݊
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Example 2. By using Equation 2, we have ݎݐ(ܲܣଶ(ܵ)) = 2(݊−1)ଷ/݊ଶ. Let ܲ denote 
the path Pn, then  

)ܣܲ ܲ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 2/3 0
2/3 0 1

0 1 0
0 0

0 ⋱ 0

0 0
0 1 0
1 0 2/3
0 2/3 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

The diagonal elements of PA2 are ସ
ଽ

. ଵଷ
ଽ

. 2.2. … .2. ଵଷ
ଽ

. ସ
ଽ
. Therefore, 

)ଶܣ൫ܲݎݐ ܲ)൯ = ଷସ
ଽ

+ 2(݊ − 4) = 2݊ − ଷ଼
ଽ

. 
 
Lemma 4. Let ܲ(ܩ)ܣ = 

ଶ
൯(ܩ)ܣthen ߯ఒ൫ܲ ,(ܩ)ܣ = (

ଶ
)߯మ

ೝఒ
൫(ܩ)ܣ൯. 

Proof. The proof is straightforward. 
 

For an example, ܲܣ(ܵ) = ିଵ

 ,and by using Lemma 4 (ܵ)ܣ

߯ఒ൫ܲܣ(ܵ)൯ = (ିଵ


)߯ ഊ
షభ
൫ܣ(ܵ)൯. 

It is not so difficult to see that ܲܣ(ܭ.) = 
ା

 and hence (.ܭ)ܣ

߯ఒ൫ܲܣ(ܭ.)൯ = ( 
ା

)߯(శ)ഊ


൫ܣ(ܭ.)൯. 

 
Theorem 5. Let G be a graph with vertices set {1.2. … . ݊} and ISI matrix PA. Then 

i) (ܣܲ)ݎݐ = 0 

ii) ݎݐ(ܲܣଶ) =2∑ ൬ ௗௗೕ
ௗାௗೕ

൰
ଶ

~ . (ଶܣܲ) = ݀ ݀ ∑
ௗೖ
మ

(ௗାௗೖ)(ௗೕାௗೖ).~.~ . 

iii) ݎݐ(ܲܣଷ) =2∑ ൫ௗௗೕ൯
మ

ௗାௗೕ
(∑ ௗೖ

మ

(ௗାௗೖ)൫ௗೕାௗೖ൯
)..~.~~  

iv) ݎݐ(ܲܣସ) = ∑ ൬∑ ቀ ௗௗ
ௗାௗ

ቁ
ଶ

~ ൰
ଶ


ୀଵ + ∑ ݀ ݀(∑ ௗ

మ

(ௗାௗ)൫ௗೕାௗ൯
).~.~

ଶ

ஷ . 

Proof. All parts can be proved as follows: 
i) The Part (i) is clear. 
ii) For i=j, (ܲܣଶ) = ∑ ܣܲܣܲ

ୀଵ = ∑ ଶ(ܣܲ)
ୀଵ = ∑ ଶ~(ܣܲ) = 

∑ ൬ ௗௗೕ
ௗାௗೕ

൰
ଶ

~ . Therefore, ݎݐ(ܲܣଶ) = ∑ ∑ ቀ ௗௗೖ
ௗାௗೖ

ቁ
ଶ

~

ୀଵ = 2∑ ൬ ௗௗೕ

ௗାௗೕ
൰
ଶ

~ . 

Suppose i≠j. Then, (ܲܣଶ) = ∑ ܣܲܣܲ
ୀଵ = ∑ .~.~ܣܲܣܲ = 

∑ ቀ ௗௗೖ
ௗାௗೖ

ቁ ൬ ௗೕௗೖ
ௗೕାௗೖ

൰.~.~  = ݀ ݀ ∑
ௗೖ
మ

(ௗାௗೖ)(ௗೕାௗೖ).~.~ . 
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iii) For the matrix PA3 we have (ܲܣଷ) = ∑ (ଶܣܲ)ܣܲ
ୀଵ =  

∑ ௗௗೕ
ௗାௗೕ

~(ଶܣܲ) = ∑ (∑ ௗೖ
మ

(ௗାௗೖ)൫ௗೕାௗೖ൯
).~.~~  and so we obtain 

(ଷܣܲ)ݎݐ = 
൫݀ ݀൯

ଶ

݀+ ݀
( 

݀ଶ

(݀+݀)൫ ݀+݀൯
)

.~.~~



ୀଵ

 

           = 2∑ ൫ௗௗೕ൯
మ

ௗାௗೕ
(∑ ௗೖ

మ

(ௗାௗೖ)൫ௗೕାௗೖ൯
).~.~~ . 

iv) The trace of PA4 is 

(ସܣܲ)ݎݐ =  ଶ(ଶܣܲ)


.ୀଵ

= (ܲܣଶ)ଶ
ୀ

+ (ܲܣଶ)ଶ
ஷ

 

                                         = ∑ ൬∑ ቀ ௗௗ
ௗାௗ

ቁ
ଶ

~ ൰
ଶ


ୀଵ + ∑ ݀ ݀(∑ ௗ

మ

(ௗାௗ)൫ௗೕାௗ൯
).~.~

ଶ

ஷ .

 
This completes our argument. 
 
5. ENERGY AND LAPLACIAN ENERGY 

One of branches of graph theory which has many applications in chemistry is spectral 
theory based on the eigenvalues of the adjacency matrix [6,10]. Let G be a simple graph 
on n vertices and ߣଵ. .ଶߣ … .   be the eigenvalues of its adjacency matrix. The energy E(G)ߣ
of the graph G is defined as the sum of the absolute values of its eigenvalues, i.e. ܧ =
(ܩ)ܧ = ∑ |ߣ|

ୀଵ . Here, we define the ISI energy as the sum of absolute values of the 
eigenvalues of the ISI matrix. More formally: Let ߩଵ. .ଶߩ … .   be the eigenvalues of theߩ
ISI matrix PA(G). It is not difficult to see that these eigenvalues are real numbers and their 
sum is zero. Hence, the ISI energy can be defined as [8] ܲܧܣ = (ܩ)ܧܣܲ = ∑ |ߩ|

ୀଵ . This 
definition is applicable to all graphs. 
 
Theorem 6. Let G be a graph with n vertices. Then ܲ(ܩ)ܧܣ ≤  .(ܩ)ܫܵܫ2݊√
 
Proof. The variance of the numbers |ߩ|, i=1,2,…,n is equal to 

1
݊

|ଶߩ|


ୀଵ

− ൭
1
݊

|ߩ|


ୀଵ

൱
ଶ

 

which is greater than or equal to zero. Now, ∑ |ଶߩ|
ୀଵ = ∑ ଶߩ

ୀଵ =  and (ଶܣܲ)ݎݐ
therefore ଵ


(ଶܣܲ)ݎݐ − (ଵ


ଶ(ܧܣܲ ≥ 0. Hence,  

(ܩ)ܧܣܲ ≤ ඥ݊ݎݐ(ܲܣଶ) ≤ ඥ2݊((ܩ)ܫܵܫ)ଶ =  .(ܩ)ܫܵܫ2݊√
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Theorem 7. Let G be a graph with n vertices and at least one edge. Then  

(ܩ)ܧܣܲ  ≥ 2∑ ௗௗೕ
ௗାௗೕ~

⎝

⎛
ଶ∑

ೕ
శೕ

~ೕ

∑ ൭∑ ቆ
ೕ
శೕ

ቇ
మ

~ೕ ൱
మ


సభ ା∑ ௗௗೕ(∑

ೖ
మ

൫శೖ൯ቀೕశೖቁ
).ೖ~.ೖ~ೕ

మ

ಯೕ ⎠

⎞

భ
మ

. 

Proof. The Hölder inequality implies that 

ܽ ܾ



ୀଵ

≤ ൭ܽ




ୀଵ

൱
ଵ/

൭ܽ




ୀଵ

൱
ଵ/

 

which holds for any non-negative real number ܽ, ܾ(i = 1,2,…,n). Put ܽ = |ߩ|ଶ ଷ⁄ , ܾ = 
|ସߩ| ଷ⁄ , p = 3 2⁄  and q = 3, thus we have 

∑ |ଶߩ|
ୀଵ = ∑ ଵ/ଷ(|ସߩ|)|ଶ/ଷߩ|

ୀଵ ≤ (∑ ߩ| |
ୀଵ )ଶ/ଷ(∑ |ସߩ|

ୀଵ )ଵ/ଷ.             (3) 
If G has at least one edge, then not all ߩ’s are equal to zero. Then ∑ หߩସห

ୀଵ ≠ 0 and 
Equation 3 can be rewritten as 

(ܩ)ܧܣܲ = |ߩ|


ୀଵ

≥
(∑ |ଶߩ|

ୀଵ )
య
మ

൫∑ หߩସห
ୀଵ ൯

భ
మ

=
(∑ ଶߩ

ୀଵ )
య
మ

(∑ ସߩ
ୀଵ )

భ
మ

= ඨ
ଷ(ଶܣܲ)ݎݐ

(ସܣܲ)ݎݐ  

                                 = 2∑ ௗௗೕ
ௗାௗೕ~

⎝

⎛
ଶ∑

ೕ
శೕ

~ೕ

∑ ൭∑ ቆ
ೕ
శೕ

ቇ
మ

~ೕ ൱
మ


సభ ା∑ ௗௗೕ(∑

ೖ
మ

൫శೖ൯ቀೕశೖቁ
).ೖ~.ೖ~ೕ

మ

ಯೕ ⎠

⎞

భ
మ

. 

 
Theorem 8. If G is a regular graph of degree r where r>0, then ܲ(ܩ)ܧܣ = 

ଶ
 If, in .(ܩ)ܧ

addition r = 0, then PAE = 0. 
 
Proof. If r = 0, then G is a graph without edges. Then directly from the definition of 
matrix PA, it follows that ܲܣ = 0, for all ݅. ݆ = 1.2. … .݊ and consequently PA(G) = 0. 
Therefore, PAE(G) = 0. Suppose now that G is regular of degree ݎ ≥ 0 and ݀ଵ = ݀ଶ =
⋯ = ݀ = (ܩ)ܣܲ Then all none-zero terms in PA(G) are equal to r/2, implying that .ݎ =

ଶ
ߩ ,Therefore .(ܩ)ܣ = 

ଶ
(ܩ)ܧܣܲ  for i=1,2,…n and henceߣ = ∑ |ߩ|

ୀଵ = 
ଶ
∑ |ߣ|
ୀଵ =


ଶ
 .which completes the proof ,(ܩ)ܧ
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