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1. INTRODUCTION

All graphs considered in this paper are connected, undirected and finite without loops and
multiple edges. Denoted by V(G) and E(G), we mean the set of vertices and the set of
edges of graph G, respectively.

A topological index is a kind of molecular descriptor which anticipates some
properties of chemical compound. Many topological indices were defined and many
properties are discovered. Furtula and Gutman[2] introduced the forgotten index which is
a special case of general first Zagreb index and studied its basic properties. In this paper
some application of forgotten index in chemistry is also presented and the authors proved
that this index can significantly enhance the physico-chemical applicability of the first
Zagreb index. We refer to [3] for more information about this graph invariant.
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The real number Zis called the eigenvalue of a graph I' with adjacency matrix Aif the
equation Ax=Axhas a nonzero solution. A solution vfor this equation is called eigenvector
corresponding to the eigenvalue 4. The characteristic polynomial of the matrix A is defined
asy,(G) = det(A -Al). It is easy to see that the eigenvalues of A are roots ofy,(G).

2. NOTATION AND DEFINITIONS

There are two types of Zagreb indices introduced by Gutman and Trinajestic[12]: the first
Zagreb index M; and the second Zagreb index M, defined as follows:
M; = M;i(G) = Zuev(c) d(u)? and M, = M,(G) = YuveE(G) d(u)d(v),

where d, denotes the degree of vertex u, see [1,4,7,9]. The first Zagreb index can be
rewritten also as M; = M,(G) = Xyper(c)ld(u) + d(v)]. For more details on these
topological indices we refer to [7, 14-16, 18]. With this notation, the F- index is defined
as [2,3,11,13]

F =F(G) = Zuevc) A(W)® = Zuere)[dw)? + d(v)?].
In [5] the following three topological indices are proposed:

Tl = TI(G) = Zvev) F1(v), Ty = TI1(G) = Zuver(s) F2(u. v),

T, =TL(G) = Zu¢v.{u.v}gV(G)F3 (u.v) (1)
where F1, F, and F3 are functions dependent of a vertex or on a pair of vertices of the
molecular graph G and forgotten index is of the form Equation 1.

3. BOUNDS OF FORGOTTEN INDEX

Let G be a graph on n vertices with maximum degree A, where n > 3. It is clear that
5m < dZ + d2 < 2A? and thus 5m < F(G) < 2A?m. The aim of this section is to
compute some bounds for F(G) and then we present some algebraic properties of this
index. Let A be the adjacency matrix of G and B is a symmetric matrix with the following
entries:

{d(u)2 +d()? if uv € E(G)
buU =

0 otherwise
Lemma 2. We have

) F(G) < Jtr(A)m/2,
i) Suvescedid3 = MZ(G)/n,
i) tr(B) =2 and Typepcey(dZ + d2)2

tr(B2)

v)  F(6) =z |72
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V) If Gis r-regular, then F(G) = ﬁtr(Bz).

Proof.
1) Itis not so difficult to see that

2 1
F(G) = ZquE(G)[du2 + dvz] =< \/ZuUEE(G)(duZ + dvz) mz = tr(AZ)m/Z,

as desired.
i) According to geometrical-arithmetic inequality we have

2
M2(G) = (Zuev(e)d2)” = nTuver(e) d2d2.
i) Since every element in the main diagonal of B is 0, we obtain tr(B)=0 The i-th

2
entry b;; in the diagonal of B? is b; = Yoo eE () [dviz + dvjz] . Thus, tr(B?)
2 2
= ?=1 bii = Z?=1 ZuiviEE(G) (dviz + dvjz) = 2ZquE(G)(du2 + dvz) .
. 2
iv) By Lemma 1, tr(B?) =2Yuer)(d’+d?) < 2¥uene(du’ +

dvz)ZquE(G)(du2 + dvz) < ZFZ(G)-
V) If G is r-regular, then B = 2124 and tr(B?) = 4r*tr(A4?). Hence,

— 932000 — 9.2 5 L 2y — 1 2
F(G) =2r*’m =2r xztr(A)—MZtr(B ).

Denote by o the variance of the sequence of the terms {du2 + dvz} appearing in
the definition of F(G).

Lemma 3. For any graph G, F(G) = \/m/2tr(B2) — m202.

Proof. Lemma 2 gives%tr(BZ) = Ywver)(du” + dvz)z. By the definition of a2, we
have

2
2 1 1 1

02 =— Z (d,>+d,?) - (E Z (d,* + df)) = 5—tr(B?) - —F(G)’

uveE(G) uv€eE(G)

and this equality yields the results.

Lemma 4. Let iy > u, = -+ > p, be all eigenvalues of B, then we have
i) uf 2 npi/(n—1).

. n 1
II) ’mﬂl < F(G) < Euln.

Proof. Suppose p, = pu, = -+ = p, are the eigenvalues of B.
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i) Since Y,y =tr(B)=0, we have u; =—>",u; and Cauchy-Schwarz
inequality gives

W=, u)? < Gk, m)*(n—1).
Hence,

ui _
n-1 n-1

YT T NPy T T
i) Suppose j is the vector j = (1.1.... 1) € R™. By Perron-Frobenius theorem we can

conclude that u; > |u,-|, for every J, and then u; = 0. Hence, Rayleigh quotient yields
(Bxx) | (BJj) _ 2F(G)
2 = 15lI% n

U = max
According to Part (i), we have
F(6)? = (Zuver(e)(dy” +d 2)) > Yuvere)(du” +dy?) =~ Zl 1 U7

_(ﬂl + Zl 2#1) > (ﬂl n#11) = %

Assume now that G is a A-regular graph. Then B = 2A%4 and p; = 2A%2;. It is
well know that the greatest eigenvalue of a A-regular graph is A itself. Hence, p; = 2A%A,

and then F(G) = 2A%m = A%2An = nA%), = % [y
4, SPECTRAL PROPERTIES

For given graph G, if the maximum degree of every vertex reaches to four, then G is called
a molecular graph. The first inverse sum indeg index (ISl index) defined as follows [17]:

dydy
ISI(G) ZquE(G) dy+dy,’

Let V(G)= {v1,v2,...,vn} be the vertex set of graph G. For 1, 2, ...,n, let d; be the degree of
the vertex vi. Then define the ISI adjacency matrix PA to be a matrix with entries bj; as
follows:

didj
ddej 'Ul'Uj € E(G)
b.: =
ij
0 otherwise
If the graph G is regular of degree r, then PA(G) = %A(G) and
PA2(G) = ;12 A%(G). )

Example 1. Let Gheanr-regular graph. Since tr(4%) = 2m, we have tr(4%(G)) = nr
This means that tr(PA%(G)) = nr3/4.
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Example 2. By using Equation 2, we have tr(PA%(S,)) = 2(n—1)3/n?. Let B, denote
the path Py, then

-0 2/3 0
2/3 0 1 0 0
0O 1 0
PA(R,) = 0 0
0 1 o0
0 01 0 2/3
0 2/3 0.

The diagonal elements of PA? are 319—3 22, ... .2.19—3.3. Therefore,

tr(PA2(R)) == +2(n—4) = 2n -2

Lemma 4. Let PA(G) = gA(G), then x,(PA(G)) = (%)”XEA(A(G)).

Proof. The proof is straightforward.

For an example, PA(S,) = nT_lA(Sn) and by using Lemma 4,
1:(PAGS) = ()" (AGS))
It is not so difficult to see that PA(K,, ,,) = %A(Zm.n) and hence
13 (PA®K ) = G Horma (AWK 2)).

Theorem 5. Let G be a graph with vertices set {1.2.....n} and 1Sl matrix PA. Then
i) tr(PA) =0

2

. _ did; _ di

i) tr(PA?) =2%,;_; <_di+éj) (PA%)j; = did; X ek~ (di+dk)§dj+dk)'
2

did; di

iii) tr(PA?) =22~ (di+ii)j Qi) (di"'dk)é(dj"'dk)).

2

iv) tr(PA*) =Y, (ZH ( didy )2)2 + i didi (X1~ i

d;+d; T (dj+d)(dj+a;)’

Proof. All parts can be proved as follows:
) The Part (i) is clear.

i) For i=j, (PA?);; = Xioy PAyPAy; = Xio1(PAg)? = Xi-j(PA;;)? =
2 2 2

didj 2\ — vn d;dy _ didj
Di~j <di+dj) . Therefore, tr(PA*) =Y Y« (dimk) =2 <—di+dj) .

Suppose |;éj Then, (PAZ)U = ‘,r(l=1 PAikPAkj = Z.k~i.k~j PAikPAkj =
did djd d:
Z.k~i.k~j( “ ) <]—k) =d;id; Y k-ik L

di+dy ) \dj+dy T (di+dp)(dj+dy)
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i) For the matrix PA® we have (PA%);=3X",PA;(PAY); =

did; 2y, — di .
Di~j dtd (PA%)ji = Xie i k=ik~j —(di+dk)(dj+dk)) and so we obtain
tr(PA3) = Z (dl ( Z
o ditd ;@ +dk)(d +dk)

_ (didj) #
=2~ di+d;j Qi (di+dk)(dj+dk)).
iv)  The trace of PA* is

tr(PA%) = i(PA2 Z(PAZ Z(PAZ

ij=1 i#j

= 21 <Zl l( l )2)2 + Xinj didy (X~ i

di+d I (di+d))(dj+d;)

This completes our argument.

5. ENERGY AND LAPLACIAN ENERGY

One of branches of graph theory which has many applications in chemistry is spectral
theory based on the eigenvalues of the adjacency matrix [6,10]. Let G be a simple graph
on n vertices and 1;. 4,. .... 4,, be the eigenvalues of its adjacency matrix. The energy E(G)
of the graph G is defined as the sum of the absolute values of its eigenvalues, i.e. E =
E(G) = XX ,14;|. Here, we define the ISI energy as the sum of absolute values of the
eigenvalues of the I1SI matrix. More formally: Let p;. p,. .... p, be the eigenvalues of the
ISI matrix PA(G). It is not difficult to see that these eigenvalues are real numbers and their
sum is zero. Hence, the ISI energy can be defined as [8] PAE = PAE(G) = X.I*,|p;|. This
definition is applicable to all graphs.

Theorem 6. Let G be a graph with n vertices. Then PAE(G) < V2nISI(G).

Proof. The variance of the numbers |p;|, i=1,2,...,n is equal to

1 n 1 n 2
;leilz - (EZV)H)
which is greater than or equal to zero. Now, Y™,|p;|? = X", p;> = tr(PA?%) and

therefore ;tr(PAZ) - (;PAE)2 > 0. Hence,
PAE(G) < \/ntr(PA2) < \/2n(ISI(G))? = V2nISI(G).
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Theorem 7. Let G be a graph with n vertices and at least one edge. Then

N|R

didj
did;j Zl“ld +d;

PAE(G) 2 2%k = PR
n k0
Yie 1(21 1<d +d]> > i Aidj (X k~ik~ “J(a +dk)(d +dk))

Proof. The Holder inequality implies that

Sune($a)(S)”

i=1 i=1 i=1
which holds for any non-negative real number a;, b;(i = 1,2,...,n). Put a; = |p;|?/3, b; =
lp;1#/3, p=3/2 and q = 3, thus we have
raloil? = 2o P2 o3 < e D3 (B, o] )3, ©)
If G has at Ieast one edge, then not all p;’s are equal to zero. Then 1|p | # 0 and
Equation 3 can be rewritten as

= 2 2 tr(PA?)3
pate) = 3 Int = Sl 2 _ Gipb): _ /tr<(PA4))
i=1 (Z |pl |) (Zl 1Pi )2
didj
_ did;j Zl~]z7l i+dj
- 22i~j di+dj 2\ ? a2 2
P 1(2‘4 ]<d +d}> ) +2i2j didj(C k~ik~j k

“’(di+dk)(dj+dk)

J

N |

Theorem 8. If G is a regular graph of degree r where r>0, then PAE(G) = gE(G). If, in
addition r = 0, then PAE = 0.

Proof. If r = 0, then G is a graph without edges. Then directly from the definition of
matrix PA, it follows that PA;; = 0O, for all i.j = 1.2.....n and consequently PA(G) = 0
Therefore, PAE(G) = 0. Suppose now that G is regular of degree r >0 and d, =d, =

= d,, = r. Then all none-zero terms in PA(G) are equal to r/2, implying that PA(G) =
—A(G) Therefore, p; = /1 for i=1,2,...n and hence PAE(G) = XM lpl zg oAl =

EE(G), which completes the proof.
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