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 Using an identity for effective resistances ,   we find a relationship 
between the arithmetic-geometric index and the global cyclicity index . 
 Also ,  with the help of majorization ,  we find tight upper and lower 
bounds for the arithmetic-geometric index . 
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1. INTRODUCTION  

 Let G=(V,E) be a finite simple graph with vertex set V={1 ,  2 , ... ,  n} ,  edge set E and 
degrees ݀ଵ ≥ ݀ଶ ≥ ⋯ ≥ ݀ .  The arithmetic-geometric index of a graph ,  proposed by 
Vukičević and Furtula (see[19]) ,  is defined by  

(ܩ)ܣܩ = ∑ ଶඥௗௗೕ
ௗାௗೕ(,)∈ா                                        (1) 

This index has attracted considerable attention and ,  through a variety of 
inequalities ,  it has been compared to a number of other indices ,  such as the ABC index , 
 the first and second Zagreb indices ,  the general Randić index ,  the modified Narumi-
Katayama index and the harmonic and sum-connectivity indices ,  among others .   Different 
upper and lower bounds have been found for GA(G) either through the connections to 
these other indices ,  or from first principles,  see [5 − 8, 12, 15 − 18] for details .
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  In this note we present two additional contributions to the study of GA(G) .  First , 
 we use notions of electric circuits in order to prove a relationship ,  to the best of our 
knowledge not explored yet ,  between GA(G) and the global cyclicity index ,  introduced by 
Klein and Ivanciuc (see [10]) and defined by  

(ܩ)ܥ = ∑ ଵ
ோೕ(,)∈ா −  (2)                                  |ܧ|

 where ܴ denote the effective resistance between the vertices i and j ,  that is ,  the voltage 
drop between vertices i and j when a battery is installed between those two vertices such 
that a unit current flows between them .  This index has further been studied in [2, 21−23]. 
  We also apply majorization techniques in order to find tight upper and lower 
bounds for GA(G).  Majorization has been applied extensively to find bounds and extremal 
values for a variety of descriptors . We point out the book chapters [1] and [3] and the 
recent articles [9, 13, 21] for a sample of the variety of scenarios covered with this 
approach . 

 Here is a brief summary of majorization (for more details the reader is referred to 
[11]) :  given two n-tuples ݔ = ,ଶݔ,ଵݔ) … , ݕ ) andݔ = ,ଵݕ) ,ଶݕ … , ଵݔ ) withݕ ≥ ଶݔ ≥ ⋯ ≥
ଵݕ   andݔ ≥ ଶݕ ≥ ⋯ ≥ ݔ  ,  we say that  x majorizes y and writeݕ ≻   in case ݕ

∑  ݔ
ୀଵ ≥  ∑ ݕ

ୀଵ ,                                       (3) 
for 1 ≤ k ≤ n − 1 and 

∑  ݔ
ୀଵ =  ∑ ݕ

ୀଵ .                                       (4) 
A Schur-convex function Φ : R → R keeps the majorization inequality, that is, if Φ 

is Schur-convex then x ≻ y implies Φ(x) ≥ Φ(y). Likewise, a Schur-concave function 
reverses the inequality: for this type of function x ≻ y implies Φ(x) ≤ Φ(y). A simple way 
to construct a Schur-convex (resp. Schur-concave) function is to consider Φ(x) = 
∑ (ݔ)݂
ୀଵ , where ݂: ℝ → ℝ is a convex (resp. concave) one-dimensional real function. 

The main idea for finding bounds through majorization for a molecular index is to 
express such index as a Schur-convex or Schur-concave function, and then to identify 
maximal and minimal elements, x∗ and x∗ respectively, that is, elements in the subspace of 
interest of the n-dimensional real space (which can be a set of n-tuples of degrees of 
vertices, or eigenvalues, or effective resistances, etc.) such that x∗ ≻ x ≻ x∗ , for all n-
tuples x in the subspace of interest, and then if Φ is Schur-convex we will have Φ(x∗ ) ≥ 
Φ(x) ≥ Φ(x∗ ), for all x, having thus found the upper and lower bounds of interest, Φ(x∗ ) 
and Φ(x∗ ), respectively.  A similar conclusion follows, exchanging the words “upper” and 
“lower”, if Φ is Schur-concave. 
 
2. EFFECTIVE RESISTANCES AND THE GEOMETRIC-ARITHMETIC INDEX 

The following lemma is fundamental for what follows. 
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Lemma 1. For any G and (i,j) ∈ E we have 

ܴ ≥  ఋ
ఋାଵ

( ଵ
ௗ

+ ଵ
ௗೕ

)                                (5) 

 
Proof. We prove that 

ௗାௗೕିଶ 
ௗௗೕିଵ

≥  ఋ
ఋାଵ

( ଵ
ௗ

+ ଵ
ௗೕ

)                             (6) 

Without loss of generality, let us assume that di = max{di,dj} and dj = min{di,dj}. 
Then δ ≤ dj and since the real function f(x) = ௫

௫ାଵ
 is increasing, in order to prove (6) it is 

enough to prove that 
ௗାௗೕିଶ 
ௗௗೕିଵ

≥
ௗೕ

ௗೕାଵ
( ଵ
ௗ

+ ଵ
ௗೕ

)                                  (7) 

But it is an easy computation to see that the truth of (7) is equivalent to the statement 
(݀ − 1)(݀ − ݀) ≥ 0. And now we can apply a result in [14] stating that for (i,j) ∈ E 

ܴ ≥
ௗାௗೕିଶ 
ௗௗೕିଵ

 finishing the proof .With this lemma we can prove now the following 

 
Proposition 2. For any graph G we have 
 

(ܩ)ܣܩ ≥ ଶఋ
(ఋାଵ) (ܩ)ܥ) +  (8)             (|ܧ|

 
Proof. For any G we have 

(ܩ)ܣܩ = 
2ඥ݀ ݀

݀ + ݀(,)∈

≥
2
∆  (

1
݀

+
1
݀(,)∈ா

) ିଵ 

                                                     ≥ ଶఋ
∆(ఋାଵ)

∑ ଵ
ோೕ

(,)∈ா = ଶఋ
∆(ఋାଵ)

(C(G)+|E|). 

The previous proposition yields as corollaries many lower bounds for GA(G) and upper 
bounds for C(G). For example, 
 
Corollary 3. For any G with n ≥ 3 we have 

(ܩ)ܣܩ ≥ ଶఋ|ா|మ

∆(ఋାଵ)(ିଵ)
                                (9) 

For any d-regular G we have 

(ܩ)ܥ ≤ ௗ(ௗିଵ)
ସ

                                    (10) 

Proof. It is shown in [21] that, for n ≥ 3, C(G) ≥ |ா|(|ா|ିା|ଵ)
ିଵ

.  Inserting into (8) finishes 
the proof of (a). For (b), it is immediate from the definition that if G is regular, then 
GA(G) = |E| and inserting this into (8) gives us the desired result . 
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Remarks4. The inequality (9) attains the equality for Kn, but not for other regular graphs, 
and it is not comparable to the bound found in [5]: 

(ܩ)ܣܩ ≥ ଶ|ா|√∆ఋ
∆ାఋ

                                 (11) 
 
as can be seen taking G to be Kn−1 together with an extra vertex attached with a single 
edge to any of the vertices of the Kn−1 . For this graph the bound (11) is of order n3/2 

whereas (9) is of order n2 . We will improve slightly the bound (9) below. Also, the bound 
(10) recovers a result in [21], with a totally different proof. 
 
3. MAJORIZATION AND THE GEOMETRIC-ARITHMETIC INDEX 

We present the following results, found in Section 2.3 of [1] (Corollary 2.3.2 and Theorem 
2.3.2) as a lemma which will be used below. 
 
Lemma 1. Let Σ   be the set of real n – tuples  ݔ = ,ଶݔ,ଵݔ) … ,  ≤ ... ≤ ) such that x1 ≥ x2ݔ
xn  and  ∑ ݔ

ୀଵ = ܽ.  Let Sa be the set of n-tuples belonging to Σ which additionally 
satisfy M ≥ xi ≥ m. Then  
(i) The minimal element of Σ is (


, … , 


) 

(ii) If the minimal element in (i) belongs to Sa , then it is also the minimal element of Sa; 
(iii) the maximal element of Sa is (M,M,...,M,θ,m,m,...,m), where M  appears  k times, m 
appears  n − k − 1 times, ݇ = [ି

ெି
]  and  θ = a − Mk − m(n − k − 1). 

 
Lemma 2. For all G we have 

ଶ

∑ ଵ

ೕ(,)∈ா ≤ (ܩ)ܣܩ ≤ ଶ
ఋ
∑ ଵ

ೕ
(,)∈ா   ,                        (12) 

where ܣ = ଵ
ௗ

+ ଵ
ௗೕ

 . 

 
Proof. Write  


2ඥ݀ ݀

݀ + ݀(,)∈ா

≥
2
∆ 

݀ ݀

݀ + ݀(,)∈ா

=
2
∆ 

1
(,)∈ாܣ

 

The other inequality proceeds similarly. Now we will apply majorization to the summation 
∑ ଵ

ೕ(,)∈ா , by looking at the function Φ(ݔ) = ∑ ଵ
௫

|ா|
ୀଵ  on the set of |E|-tuples ݔ =

,ଶݔ,ଵݔ) … ,  :). Specifically we will show the followingݔ
 
Proposition 3.  For any G we have 
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ଶ


 |ா|మ


≤ (ܩ)ܣܩ ≤ ଶ

ఋ
(ଶ
ଷ

+ ଵ
ఏ

+ |ܧ|) − ݇ − 1) ିଵ
ଶ

)                                  (13) 

 
where 

݇ = ቈ
ି|ா| మ

షభ
య
మି

మ
షభ

 , ߠ = ݊ − ଷ
ଶ
݇ − ଶ

ିଵ
−|ܧ|) ݇ − 1). 

The lower bound is attained by any regular graph. The upper bound is attained by the 
complete graph. 
 
Proof. We notice that the numbers ܣ satisfy 

ଶ
ିଵ

≤ ܣ ≤
ଷ
ଶ
                                            (14) 

And 

∑ (,)∈ாܣ = ∑ ௗ
ௗ


ୀଵ = ݊                                (15) 

The right inequality in (14) is clear because in any edge (i,j) of a connected graph G with n 
> 2, if di = 1 then dj ≥ 2. 

Let us consider the subset of ℝ|ா| defined as 

Σ = ݔ} ∈ ℝ|ா| ∶ ଵݔ ≥ ଶݔ ≥ ⋯ ≥ ; |ா|ݔ  ݔ = ݊}
|ா|

ୀଵ

 

and Sn the subset of Σ such that its |E|-tuples satisfy ଷ
ଶ
≥ ݔ  ≥ ଶ

ିଵ
 for 1 ≤ i ≤ |E|. By 

Lemma 1 we can find explicitly the minimal element of Sn , that is, an |E|-tuple x∗ such 
that x ≻ x∗ for x ∈ Sn , indeed ݔ∗ = ( 

|ா|
, 

|ா|
, … , 

|ா|
). 

Notice that x∗ belongs to Sn because the coordinates of x∗ , which are all equal to 


|ா|
 Satisfy ݉ = ଵ

ଶ(ିଵ)
≤ 

|ா|
≤ 

ିଵ
≤ ଷ

ଶ
= as long as n ≥ 3. Also, since f(x) = ଵ , ܯ

௫
, for x > 

0, is convex, then Φ(x) = ∑ ଵ
௫

|ா|
ୀଵ is Schur-convex, and Φ(x) ≥ Φ(x∗ ) = |ா|మ


, and since the 

|E|-tuple of numbers Aij over the edges of the graph, properly arranged in decreasing order, 

belongs to the set Sn on account of facts (14) and (15), we have that ∑ ܣ  ≥  |ா|మ

(,)∈ா  , 
and this together with (12) of lemma 2 ends the proof of the lower bound in (13). 

Analogously for the upper bound, by Lemma 2 we can identify explicitly the 
maximal element of Sn , that is, the |E|-tuple x∗ such that x∗ ≻ x for all x ∈ Sn , indeed 

∗ݔ = ቀଷ
ଶ

, ଷ
ଶ

, … , ଷ
ଶ

, ,ߠ ଶ
ିଵ

, ଶ
ିଵ

, … , ଶ
ିଵ

ቁ , where ଷ
ଶ
 appears k times, ଶ

ିଵ
 appears |E| − k − 1 

times and ݇ = ቈ
ି|ா| మ

షభ
య
మି

మ
షభ

 , ߠ = ݊ − ଷ
ଶ
݇ − ଶ

ିଵ
|ܧ|) − ݇ − 1). Therefore 



118                                                                                                                                            PALACIOS 

 ܣ ≤ Φ(ݔ∗) = (
(,)∈ா

2݇
3 +

1
ߠ + |ܧ|) − ݇ − 1)

݊ − 1
2 ) , 

and this together with (12) gives us the upper bound in (13). 
For any ∆-regular graph G the lower bound becomes |E|, which coincides with the 

value of GA(G). For the complete graph Kn , k = 0, ߠ = ଶ
ିଵ

 and the upper bound becomes 
(ିଵ)

ଶ
 , which is precisely the value of GA(Kn ) = |E|. 

 
Remarks 4. The versatility of majorization can be seen in this theorem, where the 
quantities to be majorized are neither degrees, nor eigenvalues, nor effective resistances, 
as is usually the case in the literature, but the numbers Aij , which perhaps do not have a 
clear-cut graph significance. The lower bound in (13) is always better than (8) on account 
of the fact that δ ≤ n − 1. We point out that this lower bound could have been obtained 
without majorization, by using the harmonic mean-arithmetic mean inequality. The real 
strength of the method in this case seems to be in the upper bound, which can be improved 
if we restrict somewhat the degrees of the vertices in the graph, as in the following three 
propositions. 
 
Proposition 5.  For any G without pendent vertices we have 

(ܩ)ܣܩ ≤
2
ߜ (݇ +

1
ߠ + |ܧ|) − ݇ − 1)

݊ − 1
2 ) 

Where ݇ = [(ିଵ)ିଶ|ா|
ିଵ

ߠ, [ = ݊ − ݇ − ଶ
ିଵ

|ܧ|) − ݇ − 1). The equality is attained by the 
cycle graph Cn and the complete graph Kn . 
 
Proof. In the absence of pendent vertices we can get the upper bound Aij ≤ 1 and the proof 
in the previous proposition applies, replacing everywhere 3/2 with 1. For the complete 
graph we obtain k = 0, ߠ = ଶ

ିଵ
 and the upper bound becomes (ିଵ)

ଶ
 , which is the precise 

value of GA(Kn ) = |E|. For the cycle graph, where |E| = n, we get k = n and ߠ = ଶ
ିଵ

 , and 
the upper bound becomes n, which is the value GA(Cn ) = |E|.  

 
Recall that a chemical graph is one where di ≤ 4 for all i. For this sort of graph we 

can prove the following. 
 
Proposition 6.  For any chemical graph G we have  

(ܩ)ܣܩ ≤ ଶ
ఋ
൬ଶ
ଷ

+ ଵ
ఏ

+ |ܧ|)2 ± ݇ − 1)൰ , 
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Where ݇ = [݊ − |ா|
ଶ

ߠ , [ = ݊ − ଷ
ଶ
݇ − ଵ

ଶ
|ܧ|) − ݇ − 1). The equality is attained by any 4-

regular graph. 
 
Proof. In this case we can get the lower bound ܣ ≥

ଵ
ଶ
 and the proof in proposition 2 

applies, replacing everywhere ଶ
ିଵ

 with ଵ
ଶ
. For any 4-regular graph we have k = 0 and 

ߠ = ଵ
ଶ
 , and thus the upper bound becomes 2n, which is precisely the value of GA(G) = |E|. 

Combining the two hypotheses, we obtain a more compact statement in the following 
 
Proposition 7.  For any chemical graph G without pendent vertices we have 

(ܩ)ܣܩ ≤
2
ߜ −|ܧ|3) 2݊) 

The equality is attained by the cycle graph Cn and any 4-regular graph. 
 
Proof. In this case we obtain that k = 2n−|E| and ߠ = ଵ

ଶ
 , making the computations, similar 

to those in the previous propositions, very simple . 
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