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ABSTRACT. Let H be a finite dimensional complex Hilbert space, B(H )+ be the set of 
all positive semi-definite operators on H and φ is a (not necessarily linear) unital map of 
B(H )+ preserving the Entropy-Gibbs transformation. Then there exists either a unitary or 
an anti-unitary operator U on H such that φ(A) =UAU* for any A B(H )+. 
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1. INTRODUCTION1 

Thermodynamics, a branch of physics that is concerned with the study of heat (thermo) 
and power (dynamics), might at first seem more important for engineers trying to in 
vent a new engine than for biochemists trying to understand the mechanisms of life. 
However, since chemical reactions involve atoms and molecules that are bound by the 
laws of physics, studying thermodynamics should be a priority for every aspiring 
biochemist. 
 There are two laws of thermodynamics that are important to the study of 
biochemistry. These two laws have to do with energy and order both essential for life as 
we know it. It is easy to understand that our bodies need energy to function from the 
visible muscle movement that gets us where we want to go, to the microscopic cellular 
processes that keep our brains thinking and our organs functioning. Order is also 
important. Our bodies represent a high degree of order: atoms and molecules are 
meticulously organized into a complex system ranging in scale from the microscopic to 
the macroscopic. Atoms are organized into molecules, which are organized into cells, 
which are in turn organized into the organs, bones, muscles, and skin that make up the 
human body. 

The Second Law of Thermodynamics is the Law of Increasing Entropy. This 
law states that the universe is always moving toward a greater state of disorder, or 
entropy. Anything that happens spontaneously, that is, without an input of energy, will 
result in molecules being more disorganized, more random, more mixed together, and 
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more spread out. In other words, processes always tend naturally toward the state with 
the least potential energy. An easy way to visualize this is to think of running water. 
Liquid water will always find the lowest spot, and collect there. 

This second law of thermodynamics explains why the molecules of gas that leak 
out of a broken pipe will disperse evenly, filling a room with the smell of gas, rather 
than staying together in a localized compact cloud. Similarly, you can smell the chlorine 
in the air at an indoor pool because some of the chlorine molecules escape from the 
water into the air. The law of increasing entropy also explains why houses do not 
spontaneously assemble from a pile of wood on the lawn, spills do not mop themselves 
up, and dust does not gather itself into a neat pile, ready to be swept up. Such processes 
that result in an increase of organization (that is, a decrease in entropy) require energy 
input and are not spontaneous. 

We need to appreciate the principles of thermodynamics to understand how 
biochemical reactions occur. Already explained how the first two laws of 
thermodynamics dictate the flow of energy through our universe. But how can we 
understand bio chemical reactions in terms of these laws of energy flow? In the 1800s, a 
scientist named J. Willard Gibbs described a new value, free energy, to helps us to do 
exactly that. Gibbs Free Energy, denoted by G, describes the energy available to do 
work within a system, in this case a chemical reaction. Free Energy can be used to make 
things occur that wouldn’t happen without a source of energy. Examples of work being 
done include the progress of a chemical reaction to create a new product, an engine 
running to turn the wheels of a car, and falling water moving the turbines of a 
hydroelectric power plant. Keep in mind that Free Energy, which is useful because it 
can be harnessed to do work, is different from the heat energy that is always lost in any 
process. This heat energy is generated as the cost of doing work, and is therefore often 
called nature heat tax. The Gibbs Free Energy Change, or G , is the difference 
between the G of the reactants and the G of the products. 

Let’s look at how H (enthalpy change or heat of reaction) and S  (entropy 
change of a reaction) fit together with G  to explain the behavior of a chemical 
reaction. Consider the thermodynamic equation: 

.STHG   
It is clear that the value of G  (positive or negative) depends on the values of 

H and S   as well as the temperature of the reaction. Another way to think about it is 
that the G , or maximum potential usable energy of the reaction, is distributed between 
the two terms, H  and T S . The H  (enthalpy) term represents energy that can be 
measured as the evolution or absorption of heat during the course of the reaction. The T 

S  (entropy) term indicates energy associated with the change of entropy, or disorder, 
of the system during the course of the reaction. This is the energy that increases the 
random motion or orientation of molecules involved in the reaction and is thus lost to 
the system, because it cannot be utilized productively. 
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2. PRELIMINARIES 

In the Hilbert space formulation of quantum mechanics, which is mainly due to von 
Neumann, several mathematical objects appear whose physical meaning is connected 
with the probabilistic aspects of the theory. The corresponding objects in which we are 
interested in the present work are the following. Let H be a finite dimensional complex 
Hilbert space. Let B(H ) denote the algebra of all bounded linear operators (matrices) on 
a finite dimensional Hilbert space H equipped with Hilbert-Schmidt inner product. As 
usual, an operator AB(H ) is called positive semidefinite if(Ax;x) 0: The set of all 
positive semi-definite operators on H is denoted by B(H )+ . If x and y are in H, then 

yx  stands for the rank one operator defined by 

)1(.)(*,))(( xzyxyzzyx   

The support of an operator A is standing for the orthogonal complement of the 
kernel of A and denoted by supp A. The state of a quantum mechanical system is 
represented by a nonnegative trace operator B with tr B = 1, the state operator. Let S(H ) 
be the set of all state operators on H . In the quantum observables are modeled by self 
adjoint operators and we suppose that the energy operator H is a positive semi-definite 
operator. In 2004, Bebiano, Lemos and Providencia [1] proved that if H is a self adjoint 

matrix, then  )(:)log()(max)(log HSAAAtrAHtrHetr  . Therefore, the 

important thermodynamic inequality )log()()(log AAtrAHtrHetr   implies from it. For 
the energy operator H, the statistical mean value of the state described by the statistical 
operator A is E = tr(AH) and the free energy of the state is tr(AH) + qtr(A log A); where 
q = kT, k is the Boltzman constant and T is the absolute temperature. For convenience 
we take q = -1, which is meaningful in finite dimensional vector spaces. We denote by 

*log the extension of log to the domain .0 ; defined to be 0 at 0: we also set 0.0   
and now, for positive semi-definite operators A, B and the energy operator H, we define 

EntropyGibbs transformation by )).*log*(log()(),,( BAAtrAHtrCBAG   

Following some ideas of [5] and [6], let H be the energy operator and H be a 
finite dimensional complex Hilbert space and B(H )+be the set of all positive semi-
definite operators on H . We prove that if  )()(: HBHB be a unital (not 
necessarily linear) map such that 

)).(),(),((),,( HBAGCBAG  )2(                            

Then there exists either a unitary or an anti-unitary operator U on H such that φ(A) = 
UAU*  for any A  B(H )+.  
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Moreover, a bijective map φ on the set of all rank one projections on H is called 
a symmetry transformation if it preserves the quantity trPQ called transition probability 
between pure states, i.e., if φ has the property that trPQ = trφ(P)φ(Q) holds for all rank 
one projections P; Q on H . It is clear that every transformation φ of the form φ(P) = 
UPU* with some unitary or antiunitary operator U on H is a symmetry transformation. 
Wigner’s theorem says that the converse statement is also true: every symmetry 
transformation can be obtained in this way. As non-bijective versions classical theorems 
like Wigner’s theorem or the fundamental theorem of projective geometry are notable 
and more applicable compared to the original bijective versions, see [2]. 

The aim of this paper is to prove the following theorem: 

Theorem: If  )()(: HBHB is a unital map such that  

))(),(),((),,( HBAGCBAG   

then there exists either a unitary or an anti-unitary operator U on H such that φ(A) = 
UAU* for any A  B(H)+. 

3. PROOF OF THE MAIN THEOREM 

The proof is divided into several steps. 

Step 1. Due to φ preserves the Entropy-Gibbs transformation, implicitly it said that 
G(A;B;H) <   if and only if G(φ(A);φ(B);φ(H)) < . Therefore by Example 2.7 of 
[4], supp A  supp B if and only if supp φ(A)   supp φ(B). From this we can deduce 
that supp A = supp B if and only if supp φ(A) = supp φ(B). By what we have learnt we 
conclude supp A  supp B if and only if supp φ(A)  supp φ(B). for every 
A;BB(H)+. So that for any operator AB(H)+, the rank of φ(A) equals the rank of A 
and vis versa. Indeed, let dim(H ) = n and suppose that rank     A = k. 

Then there is a chain supp A1  supp A2…  supp An of supports of 
elements of B(H )+ such that supp A stands at k-th place. From it, the chain supp φ(A1) 
  supp φ(A2)   …  supp φ(An-1)  supp φ(An), where supp φ(Ak) stands also at the 
kth place, is existed. By our arguments we obtain the rank of φ(A) equal k. This shows 
that φ preserves the rank of the elements of B(H )+. Particularly, φ preserves the rank-
one operators. 

 

Step 2. In this step we prove that φ preserves the nonzero transition probability between 
rank-one projections. 

First we prove that φ is log*- trace preserving map on full rank operators of 
B(H)+. Assume that A=BB(H)+ then G(A;B;H)=trAH. Since φ preserves the 
EntropyGibbs transformation we obtain 
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)3().()( HAtrtrAH   

Moreover φ is unital, therefore from the last equality we have 

)4().(HtrtrH   

Suppose that  )(.2dim HBBIfH is a full rank operator, then 

).(log)(),,( * BtrHtrHBIG  Since φ is unital, by the similar way we 

have )).((log))(),(,( * BtrHBIG    Because φ preserves the Entropy-Gibbs 
transformation and by 4, we conclude tr log* B = tr log*_φ(B), 

)5()(*log BtrtrAH   
for any full rank operator B B(H )+ . 

Pick mutually orthogonal rank-one projections P;Q and set B = aP+bQ, where 

a;b are arbitrary positive real numbers with a +b = l and a > 2
 > b . By Step 1,  

preserves rank of operators, then there exists positive real numbers a′,b′such that 

a′+b′= l and a′> 2
  > b′and mutually orthogonal rankone projections on H 

such that   (B)  = a′P′+b′Q′. By 5,   is a log* -trace preserving, so that log*a 

+log*b=log*a′+ log*b′. Hence ).()( aaaa    Thus ).())(( aaaaaa    
So that aa  and .bb   This means  

sp )).(()( BspB   

Now let A = xy be a rank-one projection with∥x∥= 1 and pick mutually orthogonal 
rank-one projections P;Q and set B =aP+bQ, where a;b are arbitrary positive real 
numbers with a>b . Then the quantity G(A;B;H) is obtained in this via: 

 

 .),(log*),(log*),(
)log*,(),(

)log*(log*),,(

QxxbPxxaHxx
BxxHxx

BAAtrtrAHHBAG





 

So that when A runs through the set of all rank-one projections, the quantity G(A;B;H) 
runs through the closed interval [( x;Hx ) +log*b ; ( x;Hx) +log*a] for arbitrary x H . 
Thus, G(A;B;H) _ [m+log*b ;M+log*a], where m = inf ( x;Hx) and M = sup( x;Hx ). 
Recall that sp H   [m;M] and also  Mm,   sp H. By Step 1, φ preserves rank of 
operators, then there exists positive real numbers a′; b′with a′> b′ and mutually 
orthogonal rank-one projections on H such that  (B) = a′P′+ b′Q′ : Since Sp(B) 
= Sp( (B)) we can imply that   preserve lower and upper bounds of the Entropy-
Gibbs transformation. We know there exists a sequence such as xn with ∥xn∥= 1 such 
that limn (xn;Hxn) = m. Now, if we suppose that An = xn  xn, then 
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limnG(An;B;H) = m + log*b if and only if there exist  natural number such as N 
which for n   N, we have xn  Rang(Q). Assume that Rang(Q) spanned by x   H : 
So that for every nN  there is scalar number an such that xn = anx. Since for every 
n N we have ∥xn∥= 1, so that 1na  and ∥x∥= 1. Therefore, for nN we have 

An = xn  xn = anx  anx = 2an  x x = x x. Now, by modifying the sequence xn only 

for nN and redefine An = xn  xn and let A = x  x, we can conclude that 
limnG(An;B;H) = m+ log*b if and only if A = Q. Therefore, 

QAbmHQbPaAG

bmHBAGbmHBAGQA





)(*log),),((

*log)),(),((*log),,(
 

Therefore,  (Q) = Q′ and  (P) = P′ which shows that   preserves the 
orthogonality between rankone projections. Moreover, we can conclude that  (B) = 
 (aP + bQ) = a (P) + b (Q). 

Now we prove that   preserves the nonzero transition probability between 
rank-one projections. Let A and P be different rank-one projections which are not 
orthogonal to each other, and choose a rank one projection Q which is orthogonal to P. 
Choose positive real numbers a;b then we have G(A;aP+bQ;H) = trAH - [log*a trap + 
log*b trAQ]. Also, in similar way we get 

.)()(*log

)()(*log)()())(),()(),((

QAtrb

PAtraHAtrHQPaAG




 

 

Since )),(),()(),((),,( HQbPaAGHbQaPAG   by comparing we infer 
.)()( trAPPAtr   

In the follows process, we can reduce the general case to the previous case, 
where dimH =2. Let P and Q be arbitrary two rank one projections of B(H )+. Then 
there exists a rank two element A2  B(H )+ such that supp P and supp Q are subspaces 
of supp A2: Now let supp A2 =H2, obviously dimH2 =2. Set supp   (A2)=H2′. 

Since  preserves the rank of operators we have dim H2′= 2. Because   maps 
any element of B(H )+ whose support is included in H2 to an element of B(H )+ whose 
support is included in H2′. 

Therefore, in that way   gives rise to a map  : B(H2)+ B(H2′)+ which preserves 
the EntropyGibbs transformation. Considering that the unitary operator U : H2′ 

H2 the map U  (.)U* : B(H2)+ B(H2′)+ is well defined and preserves the Entropy-
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Gibbs transformation. Moreover, if A B(H )+, since   preserves positivity then U  
(A)U* is positive semi-definite. Furthermore, tr(U  (A)U_) = tr(  (A)) = tr(A). By the 
above argument we can conclude that the map U  (.)U* preserves the nonzero 
transition probability between rank-one projections. 

Step 3. 

According to Step 2 and non-bijective version of Wigner’s theorem, we imply that there 
is a unitary or an antiunitary operator U on H such that   (P) =UPU* for any rank one 
projection P  B(H )+. Assume the map  : B(H )+ B(H )+ defined by   (P) =U*  
(P)U. By Step 2,   is well defined and preserves the Entropy-Gibbs transformation and 
has additional property that acts as the identity on rank one projections. By Step 1, for 
any rank one projection P on H we have 

supp P  supp B   supp P = supp   (P) supp   (B) 
from which we obtain supp B = supp   (B): Now we have 

 )log(log)(),,( ** BPPtrPHtrHBPG   
and 





  ))(*log*(log))(())(),(,( BPPtrHPtrHBPG  

By comparing the right-hand sides, we can conclude that  0))(log*(log*  BBpP , for 

any rank one projection P. So that ).(*loglog* BB   From this we obtain 
,)(*)( UBUBB  for any  )(HBB . Therefore, *)( UBUB  for any 

.)(  HBB  
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